--- base_model: - huihui-ai/DeepSeek-R1-Distill-Qwen-32B-abliterated library_name: transformers tags: - Text Generation - text-generation-inference - Inference Endpoints - Transformers - Fusion language: - en --- # DeepSeek-R1-Distill-Qwen-Coder-32B-Fusion-9010 ## Overview `DeepSeek-R1-Distill-Qwen-Coder-32B-Fusion-9010` is a mixed model that combines the strengths of two powerful DeepSeek-R1-Distill-Qwen-based models: [huihui-ai/DeepSeek-R1-Distill-Qwen-32B-abliterated](https://huggingface.co/huihui-ai/DeepSeek-R1-Distill-Qwen-32B-abliterated) and [huihui-ai/Qwen2.5-Coder-32B-Instruct-abliterated](https://huggingface.co/huihui-ai/Qwen2.5-Coder-32B-Instruct-abliterated). **Although it's a simple mix, the model is usable, and no gibberish has appeared**. This is an experiment. Improve thinking abilities in programming and code. If any of the models meet your expectations, please give a thumbs up. This will help us finalize which model best meets everyone's expectations. ## Model Details - **Base Models:** - [huihui-ai/DeepSeek-R1-Distill-Qwen-32B-abliterated](https://huggingface.co/huihui-ai/DeepSeek-R1-Distill-Qwen-32B-abliterated) (90%) - [huihui-ai/Qwen2.5-Coder-32B-Instruct-abliterated](https://huggingface.co/huihui-ai/Qwen2.5-Coder-32B-Instruct-abliterated) (10%) - **Model Size:** 32B parameters - **Architecture:** Qwen2.5 - **Mixing Ratio:** 9:1 (DeepSeek-R1-Distill-Qwen-32B-abliterated:Qwen2.5-Coder-32B-Instruct-abliterated) ## Usage You can use this mixed model in your applications by loading it with Hugging Face's `transformers` library: ```python from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig import torch # Load the model and tokenizer model_name = "huihui-ai/DeepSeek-R1-Distill-Qwen-Coder-32B-Fusion-9010" #quant_config_4 = BitsAndBytesConfig( # load_in_4bit=True, # bnb_4bit_compute_dtype=torch.bfloat16, # bnb_4bit_use_double_quant=True, # llm_int8_enable_fp32_cpu_offload=True, #) quant_config_8 = BitsAndBytesConfig( load_in_8bit=True, llm_int8_enable_fp32_cpu_offload=True, llm_int8_has_fp16_weight=True, ) model = AutoModelForCausalLM.from_pretrained( model_name, trust_remote_code=True, torch_dtype=torch.bfloat16, quantization_config=quant_config_8, device_map="auto", ) tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) # Initialize conversation context initial_messages = [ {"role": "system", "content": "You are a helpful assistant."} ] messages = initial_messages.copy() # Copy the initial conversation context # Enter conversation loop while True: # Get user input user_input = input("User: ").strip() # Strip leading and trailing spaces # If the user types '/exit', end the conversation if user_input.lower() == "/exit": print("Exiting chat.") break # If the user types '/clean', reset the conversation context if user_input.lower() == "/clean": messages = initial_messages.copy() # Reset conversation context print("Chat history cleared. Starting a new conversation.") continue # If input is empty, prompt the user and continue if not user_input: print("Input cannot be empty. Please enter something.") continue # Add user input to the conversation messages.append({"role": "user", "content": user_input}) # Build the chat template text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) # Tokenize input and prepare it for the model model_inputs = tokenizer([text], return_tensors="pt").to(model.device) # Generate a response from the model generated_ids = model.generate( **model_inputs, max_new_tokens=8192 ) # Extract model output, removing special tokens generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] # Add the model's response to the conversation messages.append({"role": "assistant", "content": response}) # Print the model's response print(f"Response: {response}") ``` ## Use with ollama You can use [huihui_ai/deepseek-r1-Fusion](https://ollama.com/huihui_ai/deepseek-r1-Fusion) directly ``` ollama run huihui_ai/deepseek-r1-Fusion ``` ### Donation If you like it, please click 'like' and follow us for more updates. ##### Your donation helps us continue our further development and improvement, a cup of coffee can do it. - bitcoin: ``` bc1qqnkhuchxw0zqjh2ku3lu4hq45hc6gy84uk70ge ```