File size: 3,934 Bytes
60ff2f1 1718788 60ff2f1 9eddcee 525ae96 0cf7c69 60ff2f1 288926b 60ff2f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 |
---
license: apache-2.0
base_model:
- deepseek-ai/DeepSeek-V3
tags:
- deepseek_v3
- bf16
- Safetensors
- custom_code
- Pruned
---
# huihui-ai/DeepSeek-V3-Pruned-Coder-411B
This is a pruned version of the [deepseek-ai/DeepSeek-V3](https://huggingface.co/deepseek-ai/DeepSeek-V3),
reduced from 256 experts to 160 experts. The pruned model is mainly used for [code](https://huggingface.co/huihui-ai/DeepSeek-V3-Pruned-Coder-411B/blob/main/coding_problems.py) generation.
This is a test validation to see if we can prune the model according to professional requirements and still maintain acceptable performance.
The model size has been reduced by about 1/3, and no distortion has occurred.
This allows the model to be pruned according to one's needs.
This pruned model has a total parameter is equivalent to 441B.
We will also try to prune [deepseek-ai/DeepSeek-R1](https://huggingface.co/deepseek-ai/DeepSeek-R1).
## Use with ollama
You can use [huihui_ai/deepseek-v3-pruned](https://ollama.com/huihui_ai/deepseek-v3-pruned) directly
```
ollama run huihui_ai/deepseek-v3-pruned
```
## Use with transformers
```
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
import torch
# Load the model and tokenizer
NEW_MODEL_ID = "huihui-ai/DeepSeek-V3-Pruned-Coder-411B"
quant_config_4 = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=True,
llm_int8_enable_fp32_cpu_offload=True,
)
model = AutoModelForCausalLM.from_pretrained(
NEW_MODEL_ID,
device_map="auto",
trust_remote_code=True,
quantization_config=quant_config_4,
torch_dtype=torch.bfloat16
)
tokenizer = AutoTokenizer.from_pretrained(NEW_MODEL_ID, trust_remote_code=True)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
tokenizer.pad_token_id = tokenizer.eos_token_id
# Initialize conversation context
initial_messages = [
{"role": "system", "content": "You are a helpful assistant."}
]
messages = initial_messages.copy() # Copy the initial conversation context
# Enter conversation loop
while True:
# Get user input
user_input = input("User: ").strip() # Strip leading and trailing spaces
# If the user types '/exit', end the conversation
if user_input.lower() == "/exit":
print("Exiting chat.")
break
# If the user types '/clean', reset the conversation context
if user_input.lower() == "/clear":
messages = initial_messages.copy() # Reset conversation context
print("Chat history cleared. Starting a new conversation.")
continue
# If input is empty, prompt the user and continue
if not user_input:
print("Input cannot be empty. Please enter something.")
continue
# Add user input to the conversation
messages.append({"role": "user", "content": user_input})
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].to("cuda:0"), use_cache=False, pad_token_id=tokenizer.pad_token_id, max_new_tokens=8192)
generated_tokens =response_token_ids[:, len(tokenized_message['input_ids'][0]):]
response = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
# Add the model's response to the conversation
messages.append({"role": "assistant", "content": response})
# Print the model's response
print(f"Response: {response}")
```
### Donation
If you like it, please click 'like' and follow us for more updates.
You can follow [x.com/support_huihui](https://x.com/support_huihui) to get the latest model information from huihui.ai.
##### Your donation helps us continue our further development and improvement, a cup of coffee can do it.
- bitcoin:
```
bc1qqnkhuchxw0zqjh2ku3lu4hq45hc6gy84uk70ge
```
|