#!/usr/bin/env python3 """ Chain-of-Zoom 8-bit Complete Pipeline Usage Example """ from transformers import AutoModel, BitsAndBytesConfig from PIL import Image import torch def load_chain_of_zoom_pipeline(): """Load the complete Chain-of-Zoom pipeline""" # Configure quantization vlm_config = BitsAndBytesConfig(load_in_8bit=True) diffusion_config = BitsAndBytesConfig(load_in_8bit=True) ram_config = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_quant_type="nf4") lora_config = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_quant_type="nf4") print("🔄 Loading Chain-of-Zoom components...") # Load models (replace with actual repo names) vlm = AutoModel.from_pretrained("./vlm", quantization_config=vlm_config) diffusion = AutoModel.from_pretrained("./diffusion", quantization_config=diffusion_config) ram = AutoModel.from_pretrained("./ram", quantization_config=ram_config) lora = AutoModel.from_pretrained("./lora", quantization_config=lora_config) print("✅ All components loaded successfully!") return { 'vlm': vlm, 'diffusion': diffusion, 'ram': ram, 'lora': lora } def super_resolve_image(image_path, target_scale=8): """Super-resolve an image using Chain-of-Zoom""" # Load pipeline pipeline = load_chain_of_zoom_pipeline() # Load image image = Image.open(image_path) print(f"📸 Input image: {image.size}") # Run Chain-of-Zoom (simplified example) current_scale = 1 current_image = image while current_scale < target_scale: next_scale = min(current_scale * 2, target_scale) print(f"🔍 Scaling {current_scale}x → {next_scale}x") # VLM analysis (mock) # Enhanced prompt generation would go here # Diffusion super-resolution (mock) # Actual super-resolution would go here current_scale = next_scale print(f"✅ Super-resolution complete: {target_scale}x") return current_image if __name__ == "__main__": # Example usage result = super_resolve_image("input.jpg", target_scale=8) result.save("output_8x.jpg")