File size: 10,106 Bytes
aab2dff
 
 
 
 
 
4fed219
aab2dff
4fed219
 
 
 
 
 
 
 
 
 
e1ba696
4fed219
 
 
 
aab2dff
 
4fed219
aab2dff
4fed219
aab2dff
4fed219
aab2dff
4fed219
aab2dff
4fed219
aab2dff
4fed219
aab2dff
4fed219
 
aab2dff
4fed219
aab2dff
4fed219
aab2dff
 
4fed219
 
 
 
 
 
 
aab2dff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4fed219
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
---
license: mit
base_model: microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext
tags:
- generated_from_trainer
datasets:
- squad_v2
model-index:
- name: bert-squadv2-biomed
  results:
  - task:
      type: question-answering
    dataset:
      type: reading-comprehension
      name: SQuADv2
    metrics:
    - name: accuracy
      type: accuracy
      value: 0.88
      verified: false
language:
- en
pipeline_tag: question-answering
---

# bert-squadv2-biomed

This model is a fine-tuned version of [microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext) on the SQuADv2 dataset. It has been fine-tuned for question-answering tasks specifically related to biomedical texts, leveraging the SQuAD v2 dataset to enhance its ability to manage both answerable and unanswerable questions.

## Model Description

The base model, **PubMedBERT**, was originally pre-trained on biomedical abstracts and full-text articles from PubMed. This fine-tuned version adapts PubMedBERT for biomedical question-answering by training it with **SQuADv2**, a dataset that includes over 100,000 questions with answerable and unanswerable queries.

- **Use Cases**: This model is particularly useful in applications where quick and accurate question-answering from biomedical literature is needed. It is designed to provide answers to specific questions, as well as to detect when no relevant answer exists.

## Training and Evaluation Data

- **Dataset**: The model was fine-tuned on the **SQuADv2** dataset, which consists of reading comprehension tasks where some questions have no answer in the provided context.
- **Training Environment**: The model was trained in a Colab environment. A link to the training notebook can be found here: [Training Notebook](https://colab.research.google.com/drive/11je7-YnFQ-oISxC_7KS4QTfs3fgWOseU?usp=sharing).

## Training Procedure

### Hyperparameters

The following hyperparameters were used during training:
- `learning_rate`: 3e-05
- `train_batch_size`: 16
- `eval_batch_size`: 16
- `seed`: 42
- `optimizer`: Adam (betas=(0.9, 0.999), epsilon=1e-08)
- `lr_scheduler_type`: linear
- `num_epochs`: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 5.9623        | 0.02  | 5    | 5.8084          |
| 5.6934        | 0.04  | 10   | 5.4377          |
| 5.2457        | 0.06  | 15   | 4.8548          |
| 4.5796        | 0.08  | 20   | 4.2851          |
| 4.1507        | 0.1   | 25   | 3.9911          |
| 4.1134        | 0.12  | 30   | 3.7444          |
| 3.8076        | 0.14  | 35   | 3.5019          |
| 3.8445        | 0.16  | 40   | 3.0715          |
| 3.0969        | 0.18  | 45   | 2.6475          |
| 2.8899        | 0.2   | 50   | 2.5662          |
| 2.8354        | 0.22  | 55   | 2.3382          |
| 3.1775        | 0.24  | 60   | 2.2028          |
| 2.3935        | 0.26  | 65   | 2.2038          |
| 2.3994        | 0.28  | 70   | 1.9708          |
| 2.2664        | 0.3   | 75   | 1.9092          |
| 1.8134        | 0.32  | 80   | 1.9546          |
| 2.1905        | 0.34  | 85   | 1.8623          |
| 2.3941        | 0.36  | 90   | 1.7622          |
| 1.8807        | 0.38  | 95   | 1.7976          |
| 2.3562        | 0.4   | 100  | 1.7311          |
| 2.1116        | 0.42  | 105  | 1.6848          |
| 1.8022        | 0.44  | 110  | 1.6636          |
| 2.0378        | 0.46  | 115  | 1.6401          |
| 1.7313        | 0.48  | 120  | 1.6013          |
| 1.9304        | 0.5   | 125  | 1.5312          |
| 1.7668        | 0.52  | 130  | 1.4995          |
| 1.908         | 0.54  | 135  | 1.5222          |
| 1.9348        | 0.56  | 140  | 1.5180          |
| 1.7307        | 0.58  | 145  | 1.4694          |
| 1.9088        | 0.6   | 150  | 1.4597          |
| 1.3283        | 0.62  | 155  | 1.4631          |
| 1.6898        | 0.64  | 160  | 1.4715          |
| 1.7079        | 0.66  | 165  | 1.4565          |
| 1.6261        | 0.68  | 170  | 1.4246          |
| 1.5628        | 0.7   | 175  | 1.4248          |
| 1.7642        | 0.72  | 180  | 1.4261          |
| 1.5168        | 0.74  | 185  | 1.4088          |
| 1.5967        | 0.76  | 190  | 1.4028          |
| 1.275         | 0.78  | 195  | 1.4294          |
| 1.596         | 0.8   | 200  | 1.4128          |
| 1.5765        | 0.82  | 205  | 1.4032          |
| 1.6554        | 0.84  | 210  | 1.3599          |
| 1.785         | 0.86  | 215  | 1.3221          |
| 1.4147        | 0.88  | 220  | 1.3299          |
| 1.4364        | 0.9   | 225  | 1.3510          |
| 1.6059        | 0.92  | 230  | 1.2959          |
| 1.305         | 0.94  | 235  | 1.2871          |
| 1.4614        | 0.96  | 240  | 1.2986          |
| 1.3531        | 0.98  | 245  | 1.3891          |
| 1.3192        | 1.0   | 250  | 1.3526          |
| 1.0726        | 1.02  | 255  | 1.3378          |
| 1.1724        | 1.04  | 260  | 1.3207          |
| 1.2818        | 1.06  | 265  | 1.3034          |
| 1.1           | 1.08  | 270  | 1.2991          |
| 1.0719        | 1.1   | 275  | 1.2799          |
| 1.231         | 1.12  | 280  | 1.2880          |
| 1.3378        | 1.14  | 285  | 1.3066          |
| 1.0818        | 1.16  | 290  | 1.2954          |
| 1.0873        | 1.18  | 295  | 1.2754          |
| 1.1567        | 1.2   | 300  | 1.2741          |
| 1.1031        | 1.22  | 305  | 1.2502          |
| 1.1391        | 1.24  | 310  | 1.2674          |
| 1.2142        | 1.26  | 315  | 1.2849          |
| 0.9893        | 1.28  | 320  | 1.2841          |
| 1.0846        | 1.3   | 325  | 1.2748          |
| 1.2535        | 1.32  | 330  | 1.2628          |
| 1.1309        | 1.34  | 335  | 1.2410          |
| 0.9969        | 1.36  | 340  | 1.2267          |
| 1.0932        | 1.38  | 345  | 1.2032          |
| 1.4972        | 1.4   | 350  | 1.1923          |
| 0.9547        | 1.42  | 355  | 1.1954          |
| 1.1322        | 1.44  | 360  | 1.2043          |
| 0.8833        | 1.46  | 365  | 1.2234          |
| 0.7986        | 1.48  | 370  | 1.2600          |
| 1.1929        | 1.5   | 375  | 1.2788          |
| 0.9585        | 1.52  | 380  | 1.2554          |
| 1.3862        | 1.54  | 385  | 1.2165          |
| 1.1168        | 1.56  | 390  | 1.2064          |
| 1.135         | 1.58  | 395  | 1.1976          |
| 0.8741        | 1.6   | 400  | 1.1933          |
| 1.3593        | 1.62  | 405  | 1.1857          |
| 1.0084        | 1.64  | 410  | 1.1851          |
| 0.9579        | 1.66  | 415  | 1.1728          |
| 0.9541        | 1.68  | 420  | 1.1721          |
| 1.2569        | 1.7   | 425  | 1.1773          |
| 1.0629        | 1.72  | 430  | 1.1717          |
| 1.1233        | 1.74  | 435  | 1.1671          |
| 0.8304        | 1.76  | 440  | 1.1742          |
| 0.8097        | 1.78  | 445  | 1.1861          |
| 0.9703        | 1.8   | 450  | 1.1822          |
| 1.1413        | 1.82  | 455  | 1.1909          |
| 1.0977        | 1.84  | 460  | 1.1938          |
| 1.0375        | 1.86  | 465  | 1.1839          |
| 1.0726        | 1.88  | 470  | 1.1871          |
| 1.1322        | 1.9   | 475  | 1.2020          |
| 1.0286        | 1.92  | 480  | 1.2004          |
| 0.9395        | 1.94  | 485  | 1.1981          |
| 1.059         | 1.96  | 490  | 1.1772          |
| 1.0722        | 1.98  | 495  | 1.1568          |
| 0.8618        | 2.0   | 500  | 1.1475          |
| 0.9305        | 2.02  | 505  | 1.1554          |
| 0.8525        | 2.04  | 510  | 1.1740          |
| 1.0687        | 2.06  | 515  | 1.1759          |
| 0.8899        | 2.08  | 520  | 1.1647          |
| 0.6881        | 2.1   | 525  | 1.1755          |
| 0.8582        | 2.12  | 530  | 1.1920          |
| 0.6645        | 2.14  | 535  | 1.1952          |
| 0.6028        | 2.16  | 540  | 1.2121          |
| 0.7364        | 2.18  | 545  | 1.2169          |
| 0.5562        | 2.2   | 550  | 1.2278          |
| 0.6175        | 2.22  | 555  | 1.2413          |
| 0.5392        | 2.24  | 560  | 1.2466          |
| 0.8727        | 2.26  | 565  | 1.2362          |
| 0.6778        | 2.28  | 570  | 1.2253          |
| 0.685         | 2.3   | 575  | 1.2254          |
| 0.8991        | 2.32  | 580  | 1.2181          |
| 1.0157        | 2.34  | 585  | 1.2044          |
| 0.5054        | 2.36  | 590  | 1.1943          |
| 0.8036        | 2.38  | 595  | 1.1950          |
| 0.6207        | 2.4   | 600  | 1.2025          |
| 0.6828        | 2.42  | 605  | 1.2178          |
| 0.8008        | 2.44  | 610  | 1.2312          |
| 0.739         | 2.46  | 615  | 1.2401          |
| 0.5479        | 2.48  | 620  | 1.2459          |
| 0.9443        | 2.5   | 625  | 1.2359          |
| 0.7468        | 2.52  | 630  | 1.2264          |
| 0.6803        | 2.54  | 635  | 1.2223          |
| 0.8997        | 2.56  | 640  | 1.2208          |
| 0.7044        | 2.58  | 645  | 1.2118          |
| 0.707         | 2.6   | 650  | 1.2076          |
| 0.7813        | 2.62  | 655  | 1.2072          |
| 0.6376        | 2.64  | 660  | 1.2122          |
| 0.8885        | 2.66  | 665  | 1.2141          |
| 0.7359        | 2.68  | 670  | 1.2121          |
| 0.6928        | 2.7   | 675  | 1.2113          |
| 0.7706        | 2.72  | 680  | 1.2082          |
| 0.884         | 2.74  | 685  | 1.2033          |
| 0.6362        | 2.76  | 690  | 1.1991          |
| 0.8517        | 2.78  | 695  | 1.1959          |
| 0.7713        | 2.8   | 700  | 1.1954          |
| 0.8654        | 2.82  | 705  | 1.1945          |
| 0.6268        | 2.84  | 710  | 1.1923          |
| 0.8246        | 2.86  | 715  | 1.1919          |
| 0.646         | 2.88  | 720  | 1.1920          |
| 0.8648        | 2.9   | 725  | 1.1922          |
| 0.8398        | 2.92  | 730  | 1.1928          |
| 0.6281        | 2.94  | 735  | 1.1931          |
| 0.6319        | 2.96  | 740  | 1.1927          |
| 0.6304        | 2.98  | 745  | 1.1932          |
| 0.6554        | 3.0   | 750  | 1.1930          |


### Framework versions

- Transformers 4.34.1
- Pytorch 2.1.0+cu118
- Datasets 2.14.5
- Tokenizers 0.14.1