File size: 10,106 Bytes
aab2dff 4fed219 aab2dff 4fed219 e1ba696 4fed219 aab2dff 4fed219 aab2dff 4fed219 aab2dff 4fed219 aab2dff 4fed219 aab2dff 4fed219 aab2dff 4fed219 aab2dff 4fed219 aab2dff 4fed219 aab2dff 4fed219 aab2dff 4fed219 aab2dff 4fed219 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
---
license: mit
base_model: microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext
tags:
- generated_from_trainer
datasets:
- squad_v2
model-index:
- name: bert-squadv2-biomed
results:
- task:
type: question-answering
dataset:
type: reading-comprehension
name: SQuADv2
metrics:
- name: accuracy
type: accuracy
value: 0.88
verified: false
language:
- en
pipeline_tag: question-answering
---
# bert-squadv2-biomed
This model is a fine-tuned version of [microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext) on the SQuADv2 dataset. It has been fine-tuned for question-answering tasks specifically related to biomedical texts, leveraging the SQuAD v2 dataset to enhance its ability to manage both answerable and unanswerable questions.
## Model Description
The base model, **PubMedBERT**, was originally pre-trained on biomedical abstracts and full-text articles from PubMed. This fine-tuned version adapts PubMedBERT for biomedical question-answering by training it with **SQuADv2**, a dataset that includes over 100,000 questions with answerable and unanswerable queries.
- **Use Cases**: This model is particularly useful in applications where quick and accurate question-answering from biomedical literature is needed. It is designed to provide answers to specific questions, as well as to detect when no relevant answer exists.
## Training and Evaluation Data
- **Dataset**: The model was fine-tuned on the **SQuADv2** dataset, which consists of reading comprehension tasks where some questions have no answer in the provided context.
- **Training Environment**: The model was trained in a Colab environment. A link to the training notebook can be found here: [Training Notebook](https://colab.research.google.com/drive/11je7-YnFQ-oISxC_7KS4QTfs3fgWOseU?usp=sharing).
## Training Procedure
### Hyperparameters
The following hyperparameters were used during training:
- `learning_rate`: 3e-05
- `train_batch_size`: 16
- `eval_batch_size`: 16
- `seed`: 42
- `optimizer`: Adam (betas=(0.9, 0.999), epsilon=1e-08)
- `lr_scheduler_type`: linear
- `num_epochs`: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 5.9623 | 0.02 | 5 | 5.8084 |
| 5.6934 | 0.04 | 10 | 5.4377 |
| 5.2457 | 0.06 | 15 | 4.8548 |
| 4.5796 | 0.08 | 20 | 4.2851 |
| 4.1507 | 0.1 | 25 | 3.9911 |
| 4.1134 | 0.12 | 30 | 3.7444 |
| 3.8076 | 0.14 | 35 | 3.5019 |
| 3.8445 | 0.16 | 40 | 3.0715 |
| 3.0969 | 0.18 | 45 | 2.6475 |
| 2.8899 | 0.2 | 50 | 2.5662 |
| 2.8354 | 0.22 | 55 | 2.3382 |
| 3.1775 | 0.24 | 60 | 2.2028 |
| 2.3935 | 0.26 | 65 | 2.2038 |
| 2.3994 | 0.28 | 70 | 1.9708 |
| 2.2664 | 0.3 | 75 | 1.9092 |
| 1.8134 | 0.32 | 80 | 1.9546 |
| 2.1905 | 0.34 | 85 | 1.8623 |
| 2.3941 | 0.36 | 90 | 1.7622 |
| 1.8807 | 0.38 | 95 | 1.7976 |
| 2.3562 | 0.4 | 100 | 1.7311 |
| 2.1116 | 0.42 | 105 | 1.6848 |
| 1.8022 | 0.44 | 110 | 1.6636 |
| 2.0378 | 0.46 | 115 | 1.6401 |
| 1.7313 | 0.48 | 120 | 1.6013 |
| 1.9304 | 0.5 | 125 | 1.5312 |
| 1.7668 | 0.52 | 130 | 1.4995 |
| 1.908 | 0.54 | 135 | 1.5222 |
| 1.9348 | 0.56 | 140 | 1.5180 |
| 1.7307 | 0.58 | 145 | 1.4694 |
| 1.9088 | 0.6 | 150 | 1.4597 |
| 1.3283 | 0.62 | 155 | 1.4631 |
| 1.6898 | 0.64 | 160 | 1.4715 |
| 1.7079 | 0.66 | 165 | 1.4565 |
| 1.6261 | 0.68 | 170 | 1.4246 |
| 1.5628 | 0.7 | 175 | 1.4248 |
| 1.7642 | 0.72 | 180 | 1.4261 |
| 1.5168 | 0.74 | 185 | 1.4088 |
| 1.5967 | 0.76 | 190 | 1.4028 |
| 1.275 | 0.78 | 195 | 1.4294 |
| 1.596 | 0.8 | 200 | 1.4128 |
| 1.5765 | 0.82 | 205 | 1.4032 |
| 1.6554 | 0.84 | 210 | 1.3599 |
| 1.785 | 0.86 | 215 | 1.3221 |
| 1.4147 | 0.88 | 220 | 1.3299 |
| 1.4364 | 0.9 | 225 | 1.3510 |
| 1.6059 | 0.92 | 230 | 1.2959 |
| 1.305 | 0.94 | 235 | 1.2871 |
| 1.4614 | 0.96 | 240 | 1.2986 |
| 1.3531 | 0.98 | 245 | 1.3891 |
| 1.3192 | 1.0 | 250 | 1.3526 |
| 1.0726 | 1.02 | 255 | 1.3378 |
| 1.1724 | 1.04 | 260 | 1.3207 |
| 1.2818 | 1.06 | 265 | 1.3034 |
| 1.1 | 1.08 | 270 | 1.2991 |
| 1.0719 | 1.1 | 275 | 1.2799 |
| 1.231 | 1.12 | 280 | 1.2880 |
| 1.3378 | 1.14 | 285 | 1.3066 |
| 1.0818 | 1.16 | 290 | 1.2954 |
| 1.0873 | 1.18 | 295 | 1.2754 |
| 1.1567 | 1.2 | 300 | 1.2741 |
| 1.1031 | 1.22 | 305 | 1.2502 |
| 1.1391 | 1.24 | 310 | 1.2674 |
| 1.2142 | 1.26 | 315 | 1.2849 |
| 0.9893 | 1.28 | 320 | 1.2841 |
| 1.0846 | 1.3 | 325 | 1.2748 |
| 1.2535 | 1.32 | 330 | 1.2628 |
| 1.1309 | 1.34 | 335 | 1.2410 |
| 0.9969 | 1.36 | 340 | 1.2267 |
| 1.0932 | 1.38 | 345 | 1.2032 |
| 1.4972 | 1.4 | 350 | 1.1923 |
| 0.9547 | 1.42 | 355 | 1.1954 |
| 1.1322 | 1.44 | 360 | 1.2043 |
| 0.8833 | 1.46 | 365 | 1.2234 |
| 0.7986 | 1.48 | 370 | 1.2600 |
| 1.1929 | 1.5 | 375 | 1.2788 |
| 0.9585 | 1.52 | 380 | 1.2554 |
| 1.3862 | 1.54 | 385 | 1.2165 |
| 1.1168 | 1.56 | 390 | 1.2064 |
| 1.135 | 1.58 | 395 | 1.1976 |
| 0.8741 | 1.6 | 400 | 1.1933 |
| 1.3593 | 1.62 | 405 | 1.1857 |
| 1.0084 | 1.64 | 410 | 1.1851 |
| 0.9579 | 1.66 | 415 | 1.1728 |
| 0.9541 | 1.68 | 420 | 1.1721 |
| 1.2569 | 1.7 | 425 | 1.1773 |
| 1.0629 | 1.72 | 430 | 1.1717 |
| 1.1233 | 1.74 | 435 | 1.1671 |
| 0.8304 | 1.76 | 440 | 1.1742 |
| 0.8097 | 1.78 | 445 | 1.1861 |
| 0.9703 | 1.8 | 450 | 1.1822 |
| 1.1413 | 1.82 | 455 | 1.1909 |
| 1.0977 | 1.84 | 460 | 1.1938 |
| 1.0375 | 1.86 | 465 | 1.1839 |
| 1.0726 | 1.88 | 470 | 1.1871 |
| 1.1322 | 1.9 | 475 | 1.2020 |
| 1.0286 | 1.92 | 480 | 1.2004 |
| 0.9395 | 1.94 | 485 | 1.1981 |
| 1.059 | 1.96 | 490 | 1.1772 |
| 1.0722 | 1.98 | 495 | 1.1568 |
| 0.8618 | 2.0 | 500 | 1.1475 |
| 0.9305 | 2.02 | 505 | 1.1554 |
| 0.8525 | 2.04 | 510 | 1.1740 |
| 1.0687 | 2.06 | 515 | 1.1759 |
| 0.8899 | 2.08 | 520 | 1.1647 |
| 0.6881 | 2.1 | 525 | 1.1755 |
| 0.8582 | 2.12 | 530 | 1.1920 |
| 0.6645 | 2.14 | 535 | 1.1952 |
| 0.6028 | 2.16 | 540 | 1.2121 |
| 0.7364 | 2.18 | 545 | 1.2169 |
| 0.5562 | 2.2 | 550 | 1.2278 |
| 0.6175 | 2.22 | 555 | 1.2413 |
| 0.5392 | 2.24 | 560 | 1.2466 |
| 0.8727 | 2.26 | 565 | 1.2362 |
| 0.6778 | 2.28 | 570 | 1.2253 |
| 0.685 | 2.3 | 575 | 1.2254 |
| 0.8991 | 2.32 | 580 | 1.2181 |
| 1.0157 | 2.34 | 585 | 1.2044 |
| 0.5054 | 2.36 | 590 | 1.1943 |
| 0.8036 | 2.38 | 595 | 1.1950 |
| 0.6207 | 2.4 | 600 | 1.2025 |
| 0.6828 | 2.42 | 605 | 1.2178 |
| 0.8008 | 2.44 | 610 | 1.2312 |
| 0.739 | 2.46 | 615 | 1.2401 |
| 0.5479 | 2.48 | 620 | 1.2459 |
| 0.9443 | 2.5 | 625 | 1.2359 |
| 0.7468 | 2.52 | 630 | 1.2264 |
| 0.6803 | 2.54 | 635 | 1.2223 |
| 0.8997 | 2.56 | 640 | 1.2208 |
| 0.7044 | 2.58 | 645 | 1.2118 |
| 0.707 | 2.6 | 650 | 1.2076 |
| 0.7813 | 2.62 | 655 | 1.2072 |
| 0.6376 | 2.64 | 660 | 1.2122 |
| 0.8885 | 2.66 | 665 | 1.2141 |
| 0.7359 | 2.68 | 670 | 1.2121 |
| 0.6928 | 2.7 | 675 | 1.2113 |
| 0.7706 | 2.72 | 680 | 1.2082 |
| 0.884 | 2.74 | 685 | 1.2033 |
| 0.6362 | 2.76 | 690 | 1.1991 |
| 0.8517 | 2.78 | 695 | 1.1959 |
| 0.7713 | 2.8 | 700 | 1.1954 |
| 0.8654 | 2.82 | 705 | 1.1945 |
| 0.6268 | 2.84 | 710 | 1.1923 |
| 0.8246 | 2.86 | 715 | 1.1919 |
| 0.646 | 2.88 | 720 | 1.1920 |
| 0.8648 | 2.9 | 725 | 1.1922 |
| 0.8398 | 2.92 | 730 | 1.1928 |
| 0.6281 | 2.94 | 735 | 1.1931 |
| 0.6319 | 2.96 | 740 | 1.1927 |
| 0.6304 | 2.98 | 745 | 1.1932 |
| 0.6554 | 3.0 | 750 | 1.1930 |
### Framework versions
- Transformers 4.34.1
- Pytorch 2.1.0+cu118
- Datasets 2.14.5
- Tokenizers 0.14.1 |