huqiming513 commited on
Commit
e1669ce
·
1 Parent(s): 2a2ae9a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +5 -47
README.md CHANGED
@@ -1,60 +1,18 @@
1
  ## [Low-light Image Enhancement via Breaking Down the Darkness](https://arxiv.org/abs/2111.15557)
2
  by Xiaojie Guo, Qiming Hu.
3
 
4
- [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/mingcv/Bread/blob/main/bread_demo_uploader.ipynb) (Online Demo)
5
 
6
- <!-- ![figure_tease](https://github.com/mingcv/Bread/blob/main/figures/figure_tease.png) -->
7
-
8
- ### 1. Dependencies
9
- * Python3
10
- * PyTorch>=1.0
11
- * OpenCV-Python, TensorboardX
12
- * NVIDIA GPU+CUDA
13
-
14
- ### 2. Network Architecture
15
  ![figure_arch](https://github.com/mingcv/Bread/blob/main/figures/Bread_architecture_full.png)
16
 
17
- ### 3. Data Preparation
18
-
19
- #### 3.1. Training dataset
20
- * 485 low/high-light image pairs from our485 of [LOL dataset](https://daooshee.github.io/BMVC2018website/), each low image of which is augmented by our [exposure_augment.py](https://github.com/mingcv/Bread/blob/main/exposure_augment.py) to generate 8 images under different exposures. ([Download Link for Augmented LOL](https://drive.google.com/file/d/1gyX2kYJWuj3C00eobd49MjRuNbZ29dqN/view?usp=sharing))
21
- * To train the MECAN (if it is desired), 559 randomly-selected multi-exposure sequences from [SICE](https://github.com/csjcai/SICE) are adopted ([Download Link for a resized version](https://drive.google.com/file/d/1OTNP-QJ3Nade5my04A2iYVTY77IQBEMf/view?usp=sharing)).
22
-
23
- #### 3.2. Tesing dataset
24
- The images for testing can be downloaded in [this link](https://github.com/mingcv/Bread/releases/download/checkpoints/data.zip).
25
-
26
- <!-- * 15 low/high-light image pairs from eval15 of [LOL dataset](https://daooshee.github.io/BMVC2018website/).
27
- * 44 low-light images from DICM.
28
- * 8 low-light images from NPE.
29
- * 24 low-light images from VV. -->
30
-
31
- ### 4. Usage
32
-
33
- #### 4.1. Training
34
- * Multi-exposure data synthesis: ```python exposure_augment.py```
35
- * Train IAN: ```python train_IAN.py -m IAN --comment IAN_train --batch_size 1 --val_interval 1 --num_epochs 500 --lr 0.001 --no_sche```
36
- * Train ANSN: ```python train_ANSN.py -m1 IAN -m2 ANSN --comment ANSN_train --batch_size 1 --val_interval 1 --num_epochs 500 --lr 0.001 --no_sche -m1w ./checkpoints/IAN_335.pth```
37
- * Train CAN: ```python train_CAN.py -m1 IAN -m3 FuseNet --comment CAN_train --batch_size 1 --val_interval 1 --num_epochs 500 --lr 0.001 --no_sche -m1w ./checkpoints/IAN_335.pth```
38
- * Train MECAN on SICE: ```python train_MECAN.py -m FuseNet --comment MECAN_train --batch_size 1 --val_interval 1 --num_epochs 500 --lr 0.001 --no_sche```
39
- * Finetune MECAN on SICE and LOL datasets: ```python train_MECAN_finetune.py -m FuseNet --comment MECAN_finetune --batch_size 1 --val_interval 1 --num_epochs 500 --lr 1e-4 --no_sche -mw ./checkpoints/FuseNet_MECAN_for_Finetuning_404.pth```
40
-
41
- #### 4.2. Testing
42
- * *\[Tips\]: Using gamma correction for evaluation with parameter --gc; Show extra intermediate outputs with parameter --save_extra*
43
- * Evaluation: ```python eval_Bread.py -m1 IAN -m2 ANSN -m3 FuseNet -m4 FuseNet --mef --comment Bread+NFM+ME[eval] --batch_size 1 -m1w ./checkpoints/IAN_335.pth -m2w ./checkpoints/ANSN_422.pth -m3w ./checkpoints/FuseNet_MECAN_251.pth -m4w ./checkpoints/FuseNet_NFM_297.pth```
44
- * Testing: ```python test_Bread.py -m1 IAN -m2 ANSN -m3 FuseNet -m4 FuseNet --mef --comment Bread+NFM+ME[test] --batch_size 1 -m1w ./checkpoints/IAN_335.pth -m2w ./checkpoints/ANSN_422.pth -m3w ./checkpoints/FuseNet_MECAN_251.pth -m4w ./checkpoints/FuseNet_NFM_297.pth```
45
- * Remove NFM: ```python test_Bread_NoNFM.py -m1 IAN -m2 ANSN -m3 FuseNet --mef -a 0.10 --comment Bread+ME[test] --batch_size 1 -m1w ./checkpoints/IAN_335.pth -m2w ./checkpoints/ANSN_422.pth -m3w ./checkpoints/FuseNet_MECAN_251.pth```
46
-
47
- #### 4.3. Trained weights
48
- Please refer to [our release](https://github.com/mingcv/Bread/releases/tag/checkpoints).
49
-
50
- ### 5. Quantitative comparison on eval15
51
  ![table_eval](https://github.com/mingcv/Bread/blob/main/figures/table_eval.png)
52
 
53
- ### 6. Visual comparison on eval15
54
  ![figure_eval](https://github.com/mingcv/Bread/blob/main/figures/figure_eval.png)
55
 
56
- ### 7. Visual comparison on DICM
57
  ![figure_test_dicm](https://github.com/mingcv/Bread/blob/main/figures/figure_test_dicm.png)
58
 
59
- ### 8. Visual comparison on VV and MEF-DS
60
  ![figure_test_vv_mefds](https://github.com/mingcv/Bread/blob/main/figures/figure_test_vv_mefds.png)
 
1
  ## [Low-light Image Enhancement via Breaking Down the Darkness](https://arxiv.org/abs/2111.15557)
2
  by Xiaojie Guo, Qiming Hu.
3
 
 
4
 
5
+ ### 1. Network Architecture
 
 
 
 
 
 
 
 
6
  ![figure_arch](https://github.com/mingcv/Bread/blob/main/figures/Bread_architecture_full.png)
7
 
8
+ ### 2. Quantitative comparison on eval15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
  ![table_eval](https://github.com/mingcv/Bread/blob/main/figures/table_eval.png)
10
 
11
+ ### 3. Visual comparison on eval15
12
  ![figure_eval](https://github.com/mingcv/Bread/blob/main/figures/figure_eval.png)
13
 
14
+ ### 4. Visual comparison on DICM
15
  ![figure_test_dicm](https://github.com/mingcv/Bread/blob/main/figures/figure_test_dicm.png)
16
 
17
+ ### 5. Visual comparison on VV and MEF-DS
18
  ![figure_test_vv_mefds](https://github.com/mingcv/Bread/blob/main/figures/figure_test_vv_mefds.png)