huqiming513
commited on
Commit
·
e1669ce
1
Parent(s):
2a2ae9a
Update README.md
Browse files
README.md
CHANGED
@@ -1,60 +1,18 @@
|
|
1 |
## [Low-light Image Enhancement via Breaking Down the Darkness](https://arxiv.org/abs/2111.15557)
|
2 |
by Xiaojie Guo, Qiming Hu.
|
3 |
|
4 |
-
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/mingcv/Bread/blob/main/bread_demo_uploader.ipynb) (Online Demo)
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
### 1. Dependencies
|
9 |
-
* Python3
|
10 |
-
* PyTorch>=1.0
|
11 |
-
* OpenCV-Python, TensorboardX
|
12 |
-
* NVIDIA GPU+CUDA
|
13 |
-
|
14 |
-
### 2. Network Architecture
|
15 |
![figure_arch](https://github.com/mingcv/Bread/blob/main/figures/Bread_architecture_full.png)
|
16 |
|
17 |
-
###
|
18 |
-
|
19 |
-
#### 3.1. Training dataset
|
20 |
-
* 485 low/high-light image pairs from our485 of [LOL dataset](https://daooshee.github.io/BMVC2018website/), each low image of which is augmented by our [exposure_augment.py](https://github.com/mingcv/Bread/blob/main/exposure_augment.py) to generate 8 images under different exposures. ([Download Link for Augmented LOL](https://drive.google.com/file/d/1gyX2kYJWuj3C00eobd49MjRuNbZ29dqN/view?usp=sharing))
|
21 |
-
* To train the MECAN (if it is desired), 559 randomly-selected multi-exposure sequences from [SICE](https://github.com/csjcai/SICE) are adopted ([Download Link for a resized version](https://drive.google.com/file/d/1OTNP-QJ3Nade5my04A2iYVTY77IQBEMf/view?usp=sharing)).
|
22 |
-
|
23 |
-
#### 3.2. Tesing dataset
|
24 |
-
The images for testing can be downloaded in [this link](https://github.com/mingcv/Bread/releases/download/checkpoints/data.zip).
|
25 |
-
|
26 |
-
<!-- * 15 low/high-light image pairs from eval15 of [LOL dataset](https://daooshee.github.io/BMVC2018website/).
|
27 |
-
* 44 low-light images from DICM.
|
28 |
-
* 8 low-light images from NPE.
|
29 |
-
* 24 low-light images from VV. -->
|
30 |
-
|
31 |
-
### 4. Usage
|
32 |
-
|
33 |
-
#### 4.1. Training
|
34 |
-
* Multi-exposure data synthesis: ```python exposure_augment.py```
|
35 |
-
* Train IAN: ```python train_IAN.py -m IAN --comment IAN_train --batch_size 1 --val_interval 1 --num_epochs 500 --lr 0.001 --no_sche```
|
36 |
-
* Train ANSN: ```python train_ANSN.py -m1 IAN -m2 ANSN --comment ANSN_train --batch_size 1 --val_interval 1 --num_epochs 500 --lr 0.001 --no_sche -m1w ./checkpoints/IAN_335.pth```
|
37 |
-
* Train CAN: ```python train_CAN.py -m1 IAN -m3 FuseNet --comment CAN_train --batch_size 1 --val_interval 1 --num_epochs 500 --lr 0.001 --no_sche -m1w ./checkpoints/IAN_335.pth```
|
38 |
-
* Train MECAN on SICE: ```python train_MECAN.py -m FuseNet --comment MECAN_train --batch_size 1 --val_interval 1 --num_epochs 500 --lr 0.001 --no_sche```
|
39 |
-
* Finetune MECAN on SICE and LOL datasets: ```python train_MECAN_finetune.py -m FuseNet --comment MECAN_finetune --batch_size 1 --val_interval 1 --num_epochs 500 --lr 1e-4 --no_sche -mw ./checkpoints/FuseNet_MECAN_for_Finetuning_404.pth```
|
40 |
-
|
41 |
-
#### 4.2. Testing
|
42 |
-
* *\[Tips\]: Using gamma correction for evaluation with parameter --gc; Show extra intermediate outputs with parameter --save_extra*
|
43 |
-
* Evaluation: ```python eval_Bread.py -m1 IAN -m2 ANSN -m3 FuseNet -m4 FuseNet --mef --comment Bread+NFM+ME[eval] --batch_size 1 -m1w ./checkpoints/IAN_335.pth -m2w ./checkpoints/ANSN_422.pth -m3w ./checkpoints/FuseNet_MECAN_251.pth -m4w ./checkpoints/FuseNet_NFM_297.pth```
|
44 |
-
* Testing: ```python test_Bread.py -m1 IAN -m2 ANSN -m3 FuseNet -m4 FuseNet --mef --comment Bread+NFM+ME[test] --batch_size 1 -m1w ./checkpoints/IAN_335.pth -m2w ./checkpoints/ANSN_422.pth -m3w ./checkpoints/FuseNet_MECAN_251.pth -m4w ./checkpoints/FuseNet_NFM_297.pth```
|
45 |
-
* Remove NFM: ```python test_Bread_NoNFM.py -m1 IAN -m2 ANSN -m3 FuseNet --mef -a 0.10 --comment Bread+ME[test] --batch_size 1 -m1w ./checkpoints/IAN_335.pth -m2w ./checkpoints/ANSN_422.pth -m3w ./checkpoints/FuseNet_MECAN_251.pth```
|
46 |
-
|
47 |
-
#### 4.3. Trained weights
|
48 |
-
Please refer to [our release](https://github.com/mingcv/Bread/releases/tag/checkpoints).
|
49 |
-
|
50 |
-
### 5. Quantitative comparison on eval15
|
51 |
![table_eval](https://github.com/mingcv/Bread/blob/main/figures/table_eval.png)
|
52 |
|
53 |
-
###
|
54 |
![figure_eval](https://github.com/mingcv/Bread/blob/main/figures/figure_eval.png)
|
55 |
|
56 |
-
###
|
57 |
![figure_test_dicm](https://github.com/mingcv/Bread/blob/main/figures/figure_test_dicm.png)
|
58 |
|
59 |
-
###
|
60 |
![figure_test_vv_mefds](https://github.com/mingcv/Bread/blob/main/figures/figure_test_vv_mefds.png)
|
|
|
1 |
## [Low-light Image Enhancement via Breaking Down the Darkness](https://arxiv.org/abs/2111.15557)
|
2 |
by Xiaojie Guo, Qiming Hu.
|
3 |
|
|
|
4 |
|
5 |
+
### 1. Network Architecture
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
![figure_arch](https://github.com/mingcv/Bread/blob/main/figures/Bread_architecture_full.png)
|
7 |
|
8 |
+
### 2. Quantitative comparison on eval15
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
![table_eval](https://github.com/mingcv/Bread/blob/main/figures/table_eval.png)
|
10 |
|
11 |
+
### 3. Visual comparison on eval15
|
12 |
![figure_eval](https://github.com/mingcv/Bread/blob/main/figures/figure_eval.png)
|
13 |
|
14 |
+
### 4. Visual comparison on DICM
|
15 |
![figure_test_dicm](https://github.com/mingcv/Bread/blob/main/figures/figure_test_dicm.png)
|
16 |
|
17 |
+
### 5. Visual comparison on VV and MEF-DS
|
18 |
![figure_test_vv_mefds](https://github.com/mingcv/Bread/blob/main/figures/figure_test_vv_mefds.png)
|