[paths] tagger_model = "models/hu_core_news_trf-tagger-3.5.0/model-best" parser_model = "models/hu_core_news_trf-parser-3.5.0/model-best" ner_model = "models/hu_core_news_trf-ner-3.5.0/model-best" lemmatizer_lookups = "models/hu_core_news_trf-lookup-lemmatizer-3.5.0" train = null dev = null vectors = null init_tok2vec = null [system] seed = 0 gpu_allocator = null [nlp] lang = "hu" pipeline = ["transformer","senter","tagger","morphologizer","lookup_lemmatizer","trainable_lemmatizer","lemma_smoother","experimental_arc_predicter","experimental_arc_labeler","ner"] tokenizer = {"@tokenizers":"spacy.Tokenizer.v1"} disabled = [] before_creation = null after_creation = null after_pipeline_creation = null batch_size = 1000 [components] [components.experimental_arc_labeler] factory = "experimental_arc_labeler" scorer = {"@scorers":"spacy-experimental.biaffine_parser_scorer.v1"} [components.experimental_arc_labeler.model] @architectures = "spacy-experimental.Bilinear.v1" hidden_width = 128 mixed_precision = false nO = null dropout = 0.1 grad_scaler = null [components.experimental_arc_labeler.model.tok2vec] @architectures = "spacy-transformers.Tok2VecTransformer.v3" name = "SZTAKI-HLT/hubert-base-cc" mixed_precision = false pooling = {"@layers":"reduce_mean.v1"} grad_factor = 1.0 [components.experimental_arc_labeler.model.tok2vec.get_spans] @span_getters = "spacy-transformers.strided_spans.v1" window = 128 stride = 96 [components.experimental_arc_labeler.model.tok2vec.grad_scaler_config] [components.experimental_arc_labeler.model.tok2vec.tokenizer_config] use_fast = true [components.experimental_arc_labeler.model.tok2vec.transformer_config] [components.experimental_arc_predicter] factory = "experimental_arc_predicter" scorer = {"@scorers":"spacy-experimental.biaffine_parser_scorer.v1"} [components.experimental_arc_predicter.model] @architectures = "spacy-experimental.PairwiseBilinear.v1" hidden_width = 256 nO = 1 mixed_precision = false dropout = 0.1 grad_scaler = null [components.experimental_arc_predicter.model.tok2vec] @architectures = "spacy-transformers.Tok2VecTransformer.v3" name = "SZTAKI-HLT/hubert-base-cc" mixed_precision = false pooling = {"@layers":"reduce_mean.v1"} grad_factor = 1.0 [components.experimental_arc_predicter.model.tok2vec.get_spans] @span_getters = "spacy-transformers.strided_spans.v1" window = 128 stride = 96 [components.experimental_arc_predicter.model.tok2vec.grad_scaler_config] [components.experimental_arc_predicter.model.tok2vec.tokenizer_config] use_fast = true [components.experimental_arc_predicter.model.tok2vec.transformer_config] [components.lemma_smoother] factory = "hu.lemma_smoother" [components.lookup_lemmatizer] factory = "hu.lookup_lemmatizer" scorer = {"@scorers":"spacy.lemmatizer_scorer.v1"} source = ${paths.lemmatizer_lookups} [components.morphologizer] factory = "morphologizer" extend = false overwrite = true scorer = {"@scorers":"spacy.morphologizer_scorer.v1"} [components.morphologizer.model] @architectures = "spacy.Tagger.v1" nO = null [components.morphologizer.model.tok2vec] @architectures = "spacy-transformers.TransformerListener.v1" grad_factor = 1.0 pooling = {"@layers":"reduce_mean.v1"} upstream = "*" [components.ner] factory = "beam_ner" beam_density = 0.01 beam_update_prob = 1 beam_width = 32 incorrect_spans_key = null moves = null scorer = {"@scorers":"spacy.ner_scorer.v1"} update_with_oracle_cut_size = 100 [components.ner.model] @architectures = "spacy.TransitionBasedParser.v2" state_type = "ner" extra_state_tokens = true hidden_width = 64 maxout_pieces = 3 use_upper = false nO = null [components.ner.model.tok2vec] @architectures = "spacy-transformers.Tok2VecTransformer.v3" name = "SZTAKI-HLT/hubert-base-cc" mixed_precision = false pooling = {"@layers":"reduce_mean.v1"} grad_factor = 1.0 [components.ner.model.tok2vec.get_spans] @span_getters = "spacy-transformers.strided_spans.v1" window = 128 stride = 96 [components.ner.model.tok2vec.grad_scaler_config] [components.ner.model.tok2vec.tokenizer_config] use_fast = true [components.ner.model.tok2vec.transformer_config] [components.senter] factory = "senter" overwrite = false scorer = {"@scorers":"spacy.senter_scorer.v1"} [components.senter.model] @architectures = "spacy.Tagger.v1" nO = null [components.senter.model.tok2vec] @architectures = "spacy-transformers.TransformerListener.v1" grad_factor = 1.0 upstream = "transformer" pooling = {"@layers":"reduce_mean.v1"} [components.tagger] factory = "tagger" neg_prefix = "!" overwrite = false scorer = {"@scorers":"spacy.tagger_scorer.v1"} [components.tagger.model] @architectures = "spacy.Tagger.v1" nO = null [components.tagger.model.tok2vec] @architectures = "spacy-transformers.TransformerListener.v1" grad_factor = 1.0 pooling = {"@layers":"reduce_mean.v1"} upstream = "*" [components.trainable_lemmatizer] factory = "trainable_lemmatizer_v2" backoff = "orth" min_tree_freq = 1 overwrite = false overwrite_labels = true scorer = {"@scorers":"spacy.lemmatizer_scorer.v1"} top_k = 3 [components.trainable_lemmatizer.model] @architectures = "spacy.Tagger.v1" nO = null [components.trainable_lemmatizer.model.tok2vec] @architectures = "spacy-transformers.TransformerListener.v1" grad_factor = 1.0 upstream = "transformer" pooling = {"@layers":"reduce_mean.v1"} [components.transformer] factory = "transformer" max_batch_items = 4096 set_extra_annotations = {"@annotation_setters":"spacy-transformers.null_annotation_setter.v1"} [components.transformer.model] @architectures = "spacy-transformers.TransformerModel.v3" name = "SZTAKI-HLT/hubert-base-cc" mixed_precision = false [components.transformer.model.get_spans] @span_getters = "spacy-transformers.strided_spans.v1" window = 128 stride = 96 [components.transformer.model.grad_scaler_config] [components.transformer.model.tokenizer_config] use_fast = true [components.transformer.model.transformer_config] [corpora] [corpora.dev] @readers = "spacy.Corpus.v1" path = ${paths.dev} gold_preproc = false max_length = 0 limit = 0 augmenter = null [corpora.train] @readers = "spacy.Corpus.v1" path = ${paths.train} gold_preproc = false max_length = 0 limit = 0 augmenter = null [training] seed = ${system.seed} gpu_allocator = ${system.gpu_allocator} dropout = 0.1 accumulate_gradient = 1 patience = 1600 max_epochs = 0 max_steps = 20000 eval_frequency = 200 frozen_components = [] annotating_components = [] dev_corpus = "corpora.dev" train_corpus = "corpora.train" before_to_disk = null before_update = null [training.batcher] @batchers = "spacy.batch_by_words.v1" discard_oversize = false tolerance = 0.2 get_length = null [training.batcher.size] @schedules = "compounding.v1" start = 100 stop = 1000 compound = 1.001 t = 0.0 [training.logger] @loggers = "spacy.ConsoleLogger.v1" progress_bar = false [training.optimizer] @optimizers = "Adam.v1" beta1 = 0.9 beta2 = 0.999 L2_is_weight_decay = true L2 = 0.01 grad_clip = 1.0 use_averages = false eps = 0.00000001 learn_rate = 0.001 [training.score_weights] sents_f = 0.2 sents_p = 0.0 sents_r = 0.0 tag_acc = 0.2 pos_acc = 0.1 morph_acc = 0.1 morph_per_feat = null lemma_acc = 0.2 ents_f = 0.2 ents_p = 0.0 ents_r = 0.0 ents_per_type = null [pretraining] [initialize] vectors = ${paths.vectors} init_tok2vec = ${paths.init_tok2vec} vocab_data = null lookups = null before_init = null after_init = null [initialize.components] [initialize.tokenizer]