--- tags: - pytorch - autoencoder - generative-ai - mnist license: mit datasets: - mnist metrics: - mse language: - en --- # AutoEncoder A simple autoencoder trained on MNIST. This model is part of the "Introduction to Generative AI" course. For more details, visit the [GitHub repository](https://github.com/hussamalafandi/Generative_AI). ## Model Description The AutoEncoder is a neural network designed to compress and reconstruct input data. It consists of an encoder that compresses the input into a latent space and a decoder that reconstructs the input from the latent representation. ## Training Details - **Dataset**: MNIST (handwritten digits) - **Loss Function**: Mean Squared Error (MSE) - **Optimizer**: Adam - **Learning Rate**: 0.001 - **Epochs**: 40 - **Latent dim**: 10 ## Tracking For detailed training logs and metrics, visit the [Weights & Biases run](https://wandb.ai/hussam-alafandi/mnist-autoencoder/runs/f81c7dgf?nw=nwuserhussamalafandi). ## Load Model ```python from model import AutoEncoder import torch model = AutoEncoder() model.load_state_dict(torch.load("model.pth")) model.eval() ``` ## License This project is licensed under the MIT License. See the LICENSE file for details.