--- library_name: transformers license: mit base_model: xlm-roberta-large tags: - generated_from_trainer model-index: - name: roberta-finetuned-ner-en results: [] --- # roberta-finetuned-ner-en This model is a fine-tuned version of [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0000 - Erson B: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 296} - Erson I: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 296} - Oc B: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 505} - Oc I: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 505} - Roduct B: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 57} - Roduct I: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 57} - Vent B: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 62} - Vent I: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 77} - Overall Precision: 1.0 - Overall Recall: 1.0 - Overall F1: 1.0 - Overall Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Erson B | Erson I | Oc B | Oc I | Roduct B | Roduct I | Vent B | Vent I | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |:-------------:|:-----:|:----:|:---------------:|:-----------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------:|:----------------------------------------------------------:|:----------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:| | No log | 1.0 | 300 | 0.0442 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 296} | {'precision': 0.9473684210526315, 'recall': 0.972972972972973, 'f1': 0.9599999999999999, 'number': 296} | {'precision': 0.9153225806451613, 'recall': 0.899009900990099, 'f1': 0.9070929070929071, 'number': 505} | {'precision': 0.9560669456066946, 'recall': 0.904950495049505, 'f1': 0.9298067141403866, 'number': 505} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 57} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 57} | {'precision': 0.9841269841269841, 'recall': 1.0, 'f1': 0.9919999999999999, 'number': 62} | {'precision': 1.0, 'recall': 0.987012987012987, 'f1': 0.9934640522875817, 'number': 77} | 0.9562 | 0.9418 | 0.9489 | 0.9862 | | 0.2261 | 2.0 | 600 | 0.0001 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 296} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 296} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 505} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 505} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 57} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 57} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 62} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 77} | 1.0 | 1.0 | 1.0 | 1.0 | | 0.2261 | 3.0 | 900 | 0.0000 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 296} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 296} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 505} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 505} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 57} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 57} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 62} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 77} | 1.0 | 1.0 | 1.0 | 1.0 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.20.3