--- library_name: transformers license: mit base_model: xlm-roberta-large tags: - generated_from_trainer model-index: - name: xlm-roberta-large results: [] --- # xlm-roberta-large This model is a fine-tuned version of [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Date | Loc | Org | Per | Price | Product | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |:-------------:|:-----:|:----:|:---------------:|:----------------------------------------------------------:|:-----------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------:|:----------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:| | No log | 1.0 | 100 | 0.0445 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 39} | {'precision': 0.8984375, 'recall': 0.9274193548387096, 'f1': 0.9126984126984127, 'number': 124} | {'precision': 0.8448275862068966, 'recall': 0.8305084745762712, 'f1': 0.8376068376068375, 'number': 59} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 70} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 79} | {'precision': 0.9230769230769231, 'recall': 0.9230769230769231, 'f1': 0.9230769230769231, 'number': 13} | 0.9406 | 0.9479 | 0.9442 | 0.9859 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0