File size: 2,097 Bytes
5cc71e1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
---
license: apache-2.0
base_model: Langboat/mengzi-bert-base-fin
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: mengzi-bert-base-fin-finetuning-wallstreetcn-morning-news-market-overview-open-000001SH-v1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mengzi-bert-base-fin-finetuning-wallstreetcn-morning-news-market-overview-open-000001SH-v1
This model is a fine-tuned version of [Langboat/mengzi-bert-base-fin](https://huggingface.co/Langboat/mengzi-bert-base-fin) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2948
- Accuracy: 0.7241
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 38 | 0.6799 | 0.5517 |
| No log | 2.0 | 76 | 0.6132 | 0.7241 |
| No log | 3.0 | 114 | 0.6453 | 0.6207 |
| No log | 4.0 | 152 | 0.7017 | 0.7586 |
| No log | 5.0 | 190 | 0.9160 | 0.7241 |
| No log | 6.0 | 228 | 1.0803 | 0.7586 |
| No log | 7.0 | 266 | 1.1766 | 0.7241 |
| No log | 8.0 | 304 | 1.1976 | 0.7586 |
| No log | 9.0 | 342 | 1.2610 | 0.7241 |
| No log | 10.0 | 380 | 1.2948 | 0.7241 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.2
- Tokenizers 0.13.3
|