hylee
add new output features
f8d71c4
raw
history blame
17.1 kB
from typing import Dict, List, Any
from scipy.special import softmax
import numpy as np
import weakref
from utils import clean_str, clean_str_nopunct
import torch
from utils import MultiHeadModel, BertInputBuilder, get_num_words
import transformers
from transformers import BertTokenizer, BertForSequenceClassification
from transformers.utils import logging
from edu_toolkit import language_analysis
transformers.logging.set_verbosity_debug()
UPTAKE_MODEL = 'ddemszky/uptake-model'
REASONING_MODEL = 'ddemszky/student-reasoning'
QUESTION_MODEL = 'ddemszky/question-detection'
class Utterance:
def __init__(self, speaker, text, uid=None,
transcript=None, starttime=None, endtime=None, **kwargs):
self.speaker = speaker
self.text = text
self.uid = uid
self.starttime = starttime
self.endtime = endtime
self.transcript = weakref.ref(transcript) if transcript else None
self.props = kwargs
self.role = None
self.word_count = self.get_num_words(text)
self.timestamp = [starttime, endtime]
self.unit_measure = endtime - starttime
self.aggregate_unit_measure = endtime
# moments
self.uptake = None
self.reasoning = None
self.question = None
def get_clean_text(self, remove_punct=False):
if remove_punct:
return clean_str_nopunct(self.text)
return clean_str(self.text)
def get_num_words(self):
return get_num_words(self.text)
def to_dict(self):
return {
'speaker': self.speaker,
'text': self.text,
'uid': self.uid,
'starttime': self.starttime,
'endtime': self.endtime,
'uptake': self.uptake,
'reasoning': self.reasoning,
'question': self.question,
**self.props
}
def to_talk_timeline_dict(self):
return{
'speaker': self.speaker,
'text': self.text,
'role': self.role,
'timestamp': self.timestamp,
'moments': {'reasoning': self.reasoning, 'questioning': self.question, 'uptake': self.uptake},
'unitMeasure': self.unit_measure,
'aggregateUnitMeasure': self.aggregate_unit_measure,
'wordCount': self.word_count
}
def __repr__(self):
return f"Utterance(speaker='{self.speaker}'," \
f"text='{self.text}', uid={self.uid}," \
f"starttime={self.starttime}, endtime={self.endtime}, props={self.props})"
class Transcript:
def __init__(self, **kwargs):
self.utterances = []
self.params = kwargs
def add_utterance(self, utterance):
utterance.transcript = weakref.ref(self)
self.utterances.append(utterance)
def get_idx(self, idx):
if idx >= len(self.utterances):
return None
return self.utterances[idx]
def get_uid(self, uid):
for utt in self.utterances:
if utt.uid == uid:
return utt
return None
def length(self):
return len(self.utterances)
def update_utterance_roles(self, uptake_speaker):
for utt in self.utterances:
if (utt.speaker == uptake_speaker):
utt.role = 'teacher'
else:
utt.role = 'student'
def get_talk_distribution_and_length(self, uptake_speaker):
if ((uptake_speaker is None)):
return None
teacher_words = 0
student_words = 0
for utt in self.utterances:
if (utt.speaker == uptake_speaker):
utt.role = 'teacher'
teacher_words += utt.get_num_words()
else:
utt.role = 'student'
student_words += utt.get_num_words()
teacher_percentage = round(
(teacher_words / (teacher_words + student_words)) * 100)
student_percentage = 100 - teacher_percentage
return {'talk_distribution': {'teacher': teacher_percentage, 'student': student_percentage}}, {'talk_length': {'teacher': teacher_words, 'student': student_words}}
def get_word_cloud_dicts(self):
teacher_dict = {}
student_dict = {}
for utt in self.utterances.get_clean_text():
words = (utt.get_clean_text(remove_punct=True)).split(' ')
for word in words:
if utt.role == 'teacher':
if word not in teacher_dict:
teacher_dict[word] = 0
teacher_dict[word] += 1
else:
if word not in student_dict:
student_dict[word] = 0
student_dict[word] += 1
dict_list = []
for word in teacher_dict.keys():
dict_list.append(
{'text': word, 'value': teacher_dict[word], 'category': 'teacher'})
for word in student_dict.keys():
dict_list.append(
{'text': word, 'value': student_dict[word], 'category': 'student'})
return dict_list
def get_talk_timeline(self):
return [utterance.to_talk_timeline_dict() for utterance in self.utterances]
def to_dict(self):
return {
'utterances': [utterance.to_dict() for utterance in self.utterances],
**self.params
}
def __repr__(self):
return f"Transcript(utterances={self.utterances}, custom_params={self.params})"
class QuestionModel:
def __init__(self, device, tokenizer, input_builder, max_length=300, path=QUESTION_MODEL):
print("Loading models...")
self.device = device
self.tokenizer = tokenizer
self.input_builder = input_builder
self.max_length = max_length
self.model = MultiHeadModel.from_pretrained(
path, head2size={"is_question": 2})
self.model.to(self.device)
def run_inference(self, transcript):
self.model.eval()
with torch.no_grad():
for i, utt in enumerate(transcript.utterances):
if "?" in utt.text:
utt.question = 1
else:
text = utt.get_clean_text(remove_punct=True)
instance = self.input_builder.build_inputs([], text,
max_length=self.max_length,
input_str=True)
output = self.get_prediction(instance)
print(output)
utt.question = np.argmax(
output["is_question_logits"][0].tolist())
def get_prediction(self, instance):
instance["attention_mask"] = [[1] * len(instance["input_ids"])]
for key in ["input_ids", "token_type_ids", "attention_mask"]:
instance[key] = torch.tensor(
instance[key]).unsqueeze(0) # Batch size = 1
instance[key].to(self.device)
output = self.model(input_ids=instance["input_ids"],
attention_mask=instance["attention_mask"],
token_type_ids=instance["token_type_ids"],
return_pooler_output=False)
return output
class ReasoningModel:
def __init__(self, device, tokenizer, input_builder, max_length=128, path=REASONING_MODEL):
print("Loading models...")
self.device = device
self.tokenizer = tokenizer
self.input_builder = input_builder
self.max_length = max_length
self.model = BertForSequenceClassification.from_pretrained(path)
self.model.to(self.device)
def run_inference(self, transcript, min_num_words=8):
self.model.eval()
with torch.no_grad():
for i, utt in enumerate(transcript.utterances):
if utt.get_num_words() >= min_num_words:
instance = self.input_builder.build_inputs([], utt.text,
max_length=self.max_length,
input_str=True)
output = self.get_prediction(instance)
utt.reasoning = np.argmax(output["logits"][0].tolist())
def get_prediction(self, instance):
instance["attention_mask"] = [[1] * len(instance["input_ids"])]
for key in ["input_ids", "token_type_ids", "attention_mask"]:
instance[key] = torch.tensor(
instance[key]).unsqueeze(0) # Batch size = 1
instance[key].to(self.device)
output = self.model(input_ids=instance["input_ids"],
attention_mask=instance["attention_mask"],
token_type_ids=instance["token_type_ids"])
return output
class UptakeModel:
def __init__(self, device, tokenizer, input_builder, max_length=120, path=UPTAKE_MODEL):
print("Loading models...")
self.device = device
self.tokenizer = tokenizer
self.input_builder = input_builder
self.max_length = max_length
self.model = MultiHeadModel.from_pretrained(path, head2size={"nsp": 2})
self.model.to(self.device)
def run_inference(self, transcript, min_prev_words, uptake_speaker=None):
self.model.eval()
prev_num_words = 0
prev_utt = None
with torch.no_grad():
for i, utt in enumerate(transcript.utterances):
if ((uptake_speaker is None) or (utt.speaker == uptake_speaker)) and (prev_num_words >= min_prev_words):
textA = prev_utt.get_clean_text(remove_punct=False)
textB = utt.get_clean_text(remove_punct=False)
instance = self.input_builder.build_inputs([textA], textB,
max_length=self.max_length,
input_str=True)
output = self.get_prediction(instance)
utt.uptake = int(
softmax(output["nsp_logits"][0].tolist())[1] > .8)
prev_num_words = utt.get_num_words()
prev_utt = utt
def get_prediction(self, instance):
instance["attention_mask"] = [[1] * len(instance["input_ids"])]
for key in ["input_ids", "token_type_ids", "attention_mask"]:
instance[key] = torch.tensor(
instance[key]).unsqueeze(0) # Batch size = 1
instance[key].to(self.device)
output = self.model(input_ids=instance["input_ids"],
attention_mask=instance["attention_mask"],
token_type_ids=instance["token_type_ids"],
return_pooler_output=False)
return output
class EndpointHandler():
def __init__(self, path="."):
print("Loading models...")
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
self.input_builder = BertInputBuilder(tokenizer=self.tokenizer)
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
"""
data args:
inputs (:obj: `list`):
List of dicts, where each dict represents an utterance; each utterance object must have a `speaker`,
`text` and `uid`and can include list of custom properties
parameters (:obj: `dict`)
Return:
A :obj:`list` | `dict`: will be serialized and returned
"""
# get inputs
utterances = data.pop("inputs", data)
params = data.pop("parameters", None)
print("EXAMPLES")
for utt in utterances[:3]:
print("speaker %s: %s" % (utt["speaker"], utt["text"]))
transcript = Transcript(filename=params.pop("filename", None))
for utt in utterances:
transcript.add_utterance(Utterance(**utt))
print("Running inference on %d examples..." % transcript.length())
# cpu_percent = psutil.cpu_percent()
logging.set_verbosity_info()
# logger = logging.get_logger("transformers")
# logger.info(f"CPU Usage before models loaded: {cpu_percent}%")
# mem_info = psutil.virtual_memory()
# used_mem = mem_info.used / (1024 ** 3) # Convert to gigabytes
# total_mem = mem_info.total / (1024 ** 3) # Convert to gigabytes
# logger.info(
# f"Used Memory before models loaded: {used_mem:.2f} GB, Total RAM: {total_mem:.2f} GB")
# Uptake
uptake_model = UptakeModel(
self.device, self.tokenizer, self.input_builder)
uptake_speaker = params.pop("uptake_speaker", None)
uptake_model.run_inference(transcript, min_prev_words=params['uptake_min_num_words'],
uptake_speaker=uptake_speaker)
# cpu_percent = psutil.cpu_percent()
# mem_info = psutil.virtual_memory()
# used_mem = mem_info.used / (1024 ** 3) # Convert to gigabytes
# total_mem = mem_info.total / (1024 ** 3) # Convert to gigabytes
# logger.info(
# f"Used Memory after model 1 loaded: {used_mem:.2f} GB, Total Mem: {total_mem:.2f} GB")
# logger.info(f"CPU Usage after model 1 loaded: {cpu_percent}%")
# del uptake_model
# cpu_percent = psutil.cpu_percent()
# mem_info = psutil.virtual_memory()
# used_mem = mem_info.used / (1024 ** 3) # Convert to gigabytes
# total_mem = mem_info.total / (1024 ** 3) # Convert to gigabytes
# logger.info(f"Used Memory after model 1 deleted: {used_mem:.2f} GB, Total Mem: {total_mem:.2f} GB")
# logger.info(f"CPU Usage after model 1 deleted: {cpu_percent}%")
# Reasoning
reasoning_model = ReasoningModel(
self.device, self.tokenizer, self.input_builder)
reasoning_model.run_inference(transcript)
# cpu_percent = psutil.cpu_percent()
# mem_info = psutil.virtual_memory()
# used_mem = mem_info.used / (1024 ** 3) # Convert to gigabytes
# total_mem = mem_info.total / (1024 ** 3) # Convert to gigabytes
# logger.info(
# f"Used Memory after model 2 loaded: {used_mem:.2f} GB, Total Mem: {total_mem:.2f} GB")
# logger.info(f"CPU Usage after model 2 loaded: {cpu_percent}%")
# # print(f"CPU Usage after model 2 loaded: {cpu_percent}%")
# # del reasoning_model
# cpu_percent = psutil.cpu_percent()
# mem_info = psutil.virtual_memory()
# used_mem = mem_info.used / (1024 ** 3) # Convert to gigabytes
# total_mem = mem_info.total / (1024 ** 3) # Convert to gigabytes
# logger.info(f"Used Memory after model 2 deleted: {used_mem:.2f} GB, Total Mem: {total_mem:.2f} GB")
# logger.info(f"CPU Usage after model 2 deleted: {cpu_percent}%")
# print(f"CPU Usage after model 2 deleted: {cpu_percent}%")
# Question
question_model = QuestionModel(
self.device, self.tokenizer, self.input_builder)
question_model.run_inference(transcript)
# cpu_percent = psutil.cpu_percent()
# logger.info(f"CPU Usage after model 3 loaded: {cpu_percent}%")
# mem_info = psutil.virtual_memory()
# used_mem = mem_info.used / (1024 ** 3) # Convert to gigabytes
# total_mem = mem_info.total / (1024 ** 3) # Convert to gigabytes
# logger.info(
# f"Used Memory after model 3 loaded: {used_mem:.2f} GB, Total Mem: {total_mem:.2f} GB")
# print(f"CPU Usage after model 3 loaded: {cpu_percent}%")
# del question_model
# cpu_percent = psutil.cpu_percent()
# logger.info(f"CPU Usage after model 3 deleted: {cpu_percent}%")
# mem_info = psutil.virtual_memory()
# used_mem = mem_info.used / (1024 ** 3) # Convert to gigabytes
# total_mem = mem_info.total / (1024 ** 3) # Convert to gigabytes
# logger.info(f"Used Memory after model 3 deleted: {used_mem:.2f} GB, Total Mem: {total_mem:.2f} GB")
# print(f"CPU Usage after model 3 deleted: {cpu_percent}%")
transcript.update_utterance_roles
talk_dist, talk_len = transcript.get_talk_distribution_and_length(
self, uptake_speaker)
talk_timeline = transcript.get_talk_timeline()
word_cloud = transcript.get_word_cloud_dicts()
return transcript.to_dict(), talk_dist, talk_len, talk_timeline, word_cloud
# {
# "inputs": [
# {"uid": "1", "speaker": "Alice", "text": "How much is the fish?" },
# {"uid": "2", "speaker": "Bob", "text": "I do not know about the fish. Because you put a long side and it’s a long side. What do you think." },
# {"uid": "3", "speaker": "Alice", "text": "OK, thank you Bob." }
# ],
# "parameters": {
# "uptake_min_num_words": 5,
# "uptake_speaker": "Bob",
# "filename": "sample.csv"
# }
# }