hylee
commited on
Commit
·
3f1e400
1
Parent(s):
8e1280d
integrate focusing question and math terms
Browse files- handler.py +81 -4
- utils.py +282 -0
handler.py
CHANGED
@@ -19,6 +19,7 @@ transformers.logging.set_verbosity_debug()
|
|
19 |
UPTAKE_MODEL = 'ddemszky/uptake-model'
|
20 |
REASONING_MODEL = 'ddemszky/student-reasoning'
|
21 |
QUESTION_MODEL = 'ddemszky/question-detection'
|
|
|
22 |
|
23 |
|
24 |
class Utterance:
|
@@ -36,11 +37,14 @@ class Utterance:
|
|
36 |
self.timestamp = [starttime, endtime]
|
37 |
self.unit_measure = None
|
38 |
self.aggregate_unit_measure = endtime
|
|
|
|
|
39 |
|
40 |
# moments
|
41 |
self.uptake = None
|
42 |
self.reasoning = None
|
43 |
self.question = None
|
|
|
44 |
|
45 |
def get_clean_text(self, remove_punct=False):
|
46 |
if remove_punct:
|
@@ -60,6 +64,9 @@ class Utterance:
|
|
60 |
'uptake': self.uptake,
|
61 |
'reasoning': self.reasoning,
|
62 |
'question': self.question,
|
|
|
|
|
|
|
63 |
**self.props
|
64 |
}
|
65 |
|
@@ -69,10 +76,12 @@ class Utterance:
|
|
69 |
'text': self.text,
|
70 |
'role': self.role,
|
71 |
'timestamp': self.timestamp,
|
72 |
-
'moments': {'reasoning': True if self.reasoning else False, 'questioning': True if self.question else False, 'uptake': True if self.uptake else False},
|
73 |
'unitMeasure': self.unit_measure,
|
74 |
'aggregateUnitMeasure': self.aggregate_unit_measure,
|
75 |
-
'wordCount': self.word_count
|
|
|
|
|
76 |
}
|
77 |
|
78 |
def __repr__(self):
|
@@ -311,6 +320,67 @@ class UptakeModel:
|
|
311 |
return_pooler_output=False)
|
312 |
return output
|
313 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
314 |
|
315 |
class EndpointHandler():
|
316 |
def __init__(self, path="."):
|
@@ -358,14 +428,21 @@ class EndpointHandler():
|
|
358 |
question_model = QuestionModel(
|
359 |
self.device, self.tokenizer, self.input_builder)
|
360 |
question_model.run_inference(transcript)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
361 |
transcript.update_utterance_roles(uptake_speaker)
|
362 |
transcript.calculate_aggregate_word_count()
|
363 |
return_dict = {'talkDistribution': None, 'talkLength': None, 'talkMoments': None, 'commonTopWords': None, 'uptakeTopWords': None}
|
364 |
talk_dist, talk_len = transcript.get_talk_distribution_and_length(uptake_speaker)
|
365 |
return_dict['talkDistribution'] = talk_dist
|
366 |
return_dict['talkLength'] = talk_len
|
367 |
-
|
368 |
-
talk_moments = talk_timeline
|
369 |
return_dict['talkMoments'] = talk_moments
|
370 |
word_cloud, uptake_word_cloud = transcript.get_word_cloud_dicts()
|
371 |
return_dict['commonTopWords'] = word_cloud
|
|
|
19 |
UPTAKE_MODEL = 'ddemszky/uptake-model'
|
20 |
REASONING_MODEL = 'ddemszky/student-reasoning'
|
21 |
QUESTION_MODEL = 'ddemszky/question-detection'
|
22 |
+
FOCUSING_QUESTION_MODEL = 'ddemszky/focusing-questions'
|
23 |
|
24 |
|
25 |
class Utterance:
|
|
|
37 |
self.timestamp = [starttime, endtime]
|
38 |
self.unit_measure = None
|
39 |
self.aggregate_unit_measure = endtime
|
40 |
+
self.num_math_terms = None
|
41 |
+
self.math_terms = None
|
42 |
|
43 |
# moments
|
44 |
self.uptake = None
|
45 |
self.reasoning = None
|
46 |
self.question = None
|
47 |
+
self.focusing_question = None
|
48 |
|
49 |
def get_clean_text(self, remove_punct=False):
|
50 |
if remove_punct:
|
|
|
64 |
'uptake': self.uptake,
|
65 |
'reasoning': self.reasoning,
|
66 |
'question': self.question,
|
67 |
+
'focusingQuestion': self.focusing_question,
|
68 |
+
'numMathTerms': self.num_math_terms,
|
69 |
+
'mathTerms': self.math_terms,
|
70 |
**self.props
|
71 |
}
|
72 |
|
|
|
76 |
'text': self.text,
|
77 |
'role': self.role,
|
78 |
'timestamp': self.timestamp,
|
79 |
+
'moments': {'reasoning': True if self.reasoning else False, 'questioning': True if self.question else False, 'uptake': True if self.uptake else False, 'focusingQuestion': True if self.focusing_question else False},
|
80 |
'unitMeasure': self.unit_measure,
|
81 |
'aggregateUnitMeasure': self.aggregate_unit_measure,
|
82 |
+
'wordCount': self.word_count,
|
83 |
+
'numMathTerms': self.num_math_terms,
|
84 |
+
'mathTerms': self.math_terms
|
85 |
}
|
86 |
|
87 |
def __repr__(self):
|
|
|
320 |
return_pooler_output=False)
|
321 |
return output
|
322 |
|
323 |
+
class FocusingQuestionModel:
|
324 |
+
def __init__(self, device, tokenizer, input_builder, max_length=128, path=FOCUSING_QUESTION_MODEL):
|
325 |
+
print("Loading models...")
|
326 |
+
self.device = device
|
327 |
+
self.tokenizer = tokenizer
|
328 |
+
self.input_builder = input_builder
|
329 |
+
self.model = BertForSequenceClassification.from_pretrained(path)
|
330 |
+
self.model.to(self.device)
|
331 |
+
self.max_length = max_length
|
332 |
+
|
333 |
+
def run_inference(self, transcript, min_focusing_words=0, uptake_speaker=None):
|
334 |
+
self.model.eval()
|
335 |
+
with torch.no_grad():
|
336 |
+
for i, utt in enumerate(transcript.utterances):
|
337 |
+
if utt.speaker != uptake_speaker or uptake_speaker is None:
|
338 |
+
utt.focusing_question = None
|
339 |
+
continue
|
340 |
+
if utt.get_num_words() < min_focusing_words:
|
341 |
+
utt.focusing_question = None
|
342 |
+
continue
|
343 |
+
instance = self.input_builder.build_inputs([], utt.text, max_length=self.max_length, input_str=True)
|
344 |
+
output = self.get_prediction(instance)
|
345 |
+
utt.focusing_question = np.argmax(output["logits"][0].tolist())
|
346 |
+
|
347 |
+
def get_prediction(self, instance):
|
348 |
+
instance["attention_mask"] = [[1] * len(instance["input_ids"])]
|
349 |
+
for key in ["input_ids", "token_type_ids", "attention_mask"]:
|
350 |
+
instance[key] = torch.tensor(
|
351 |
+
instance[key]).unsqueeze(0) # Batch size = 1
|
352 |
+
instance[key].to(self.device)
|
353 |
+
|
354 |
+
output = self.model(input_ids=instance["input_ids"],
|
355 |
+
attention_mask=instance["attention_mask"],
|
356 |
+
token_type_ids=instance["token_type_ids"])
|
357 |
+
return output
|
358 |
+
|
359 |
+
def load_math_terms():
|
360 |
+
math_terms = []
|
361 |
+
math_terms_dict = {}
|
362 |
+
for term in MATH_WORDS:
|
363 |
+
if term in MATH_PREFIXES:
|
364 |
+
math_terms_dict[f"(^|[^a-zA-Z]){term}(s|es)?([^a-zA-Z]|$)"] = term
|
365 |
+
math_terms.append(f"(^|[^a-zA-Z]){term}(s|es)?([^a-zA-Z]|$)")
|
366 |
+
else:
|
367 |
+
math_terms_dict[f"(^|[^a-zA-Z]){term}([^a-zA-Z]|$)"] = term
|
368 |
+
math_terms.append(f"(^|[^a-zA-Z]){term}([^a-zA-Z]|$)")
|
369 |
+
return math_terms, math_terms_dict
|
370 |
+
|
371 |
+
def run_math_density(transcript):
|
372 |
+
math_terms, math_terms_dict = load_math_terms()
|
373 |
+
for i, utt in enumerate(transcript.utterances):
|
374 |
+
found_math_terms = set()
|
375 |
+
text = utt.get_clean_text(remove_punct=False)
|
376 |
+
num_math_terms = 0
|
377 |
+
for term in math_terms:
|
378 |
+
count = len(re.findall(term, text))
|
379 |
+
if count > 0:
|
380 |
+
found_math_terms.add(math_terms_dict[term])
|
381 |
+
num_math_terms += count
|
382 |
+
utt.num_math_terms = num_math_terms
|
383 |
+
utt.math_terms = list(found_math_terms)
|
384 |
|
385 |
class EndpointHandler():
|
386 |
def __init__(self, path="."):
|
|
|
428 |
question_model = QuestionModel(
|
429 |
self.device, self.tokenizer, self.input_builder)
|
430 |
question_model.run_inference(transcript)
|
431 |
+
|
432 |
+
# Focusing Question
|
433 |
+
focusing_question_model = FocusingQuestionModel(
|
434 |
+
self.device, self.tokenizer, self.input_builder)
|
435 |
+
focusing_question_model.run_inference(transcript, uptake_speaker=uptake_speaker)
|
436 |
+
|
437 |
+
run_math_density(transcript)
|
438 |
+
|
439 |
transcript.update_utterance_roles(uptake_speaker)
|
440 |
transcript.calculate_aggregate_word_count()
|
441 |
return_dict = {'talkDistribution': None, 'talkLength': None, 'talkMoments': None, 'commonTopWords': None, 'uptakeTopWords': None}
|
442 |
talk_dist, talk_len = transcript.get_talk_distribution_and_length(uptake_speaker)
|
443 |
return_dict['talkDistribution'] = talk_dist
|
444 |
return_dict['talkLength'] = talk_len
|
445 |
+
talk_moments = transcript.get_talk_timeline()
|
|
|
446 |
return_dict['talkMoments'] = talk_moments
|
447 |
word_cloud, uptake_word_cloud = transcript.get_word_cloud_dicts()
|
448 |
return_dict['commonTopWords'] = word_cloud
|
utils.py
CHANGED
@@ -13,6 +13,288 @@ punct_chars.sort()
|
|
13 |
punctuation = ''.join(punct_chars)
|
14 |
replace = re.compile('[%s]' % re.escape(punctuation))
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
def get_num_words(text):
|
17 |
if not isinstance(text, str):
|
18 |
print("%s is not a string" % text)
|
|
|
13 |
punctuation = ''.join(punct_chars)
|
14 |
replace = re.compile('[%s]' % re.escape(punctuation))
|
15 |
|
16 |
+
MATH_PREFIXES = [
|
17 |
+
"sum",
|
18 |
+
"arc",
|
19 |
+
"mass",
|
20 |
+
"digit",
|
21 |
+
"graph",
|
22 |
+
"liter",
|
23 |
+
"gram",
|
24 |
+
"add",
|
25 |
+
"angle",
|
26 |
+
"scale",
|
27 |
+
"data",
|
28 |
+
"array",
|
29 |
+
"ruler",
|
30 |
+
"meter",
|
31 |
+
"total",
|
32 |
+
"unit",
|
33 |
+
"prism",
|
34 |
+
"median",
|
35 |
+
"ratio",
|
36 |
+
"area",
|
37 |
+
]
|
38 |
+
|
39 |
+
MATH_WORDS = [
|
40 |
+
"absolute value",
|
41 |
+
"area",
|
42 |
+
"average",
|
43 |
+
"base of",
|
44 |
+
"box plot",
|
45 |
+
"categorical",
|
46 |
+
"coefficient",
|
47 |
+
"common factor",
|
48 |
+
"common multiple",
|
49 |
+
"compose",
|
50 |
+
"coordinate",
|
51 |
+
"cubed",
|
52 |
+
"decompose",
|
53 |
+
"dependent variable",
|
54 |
+
"distribution",
|
55 |
+
"dot plot",
|
56 |
+
"double number line diagram",
|
57 |
+
"equivalent",
|
58 |
+
"equivalent expression",
|
59 |
+
"ratio",
|
60 |
+
"exponent",
|
61 |
+
"frequency",
|
62 |
+
"greatest common factor",
|
63 |
+
"gcd",
|
64 |
+
"height of",
|
65 |
+
"histogram",
|
66 |
+
"independent variable",
|
67 |
+
"interquartile range",
|
68 |
+
"iqr",
|
69 |
+
"least common multiple",
|
70 |
+
"long division",
|
71 |
+
"mean absolute deviation",
|
72 |
+
"median",
|
73 |
+
"negative number",
|
74 |
+
"opposite vertex",
|
75 |
+
"parallelogram",
|
76 |
+
"percent",
|
77 |
+
"polygon",
|
78 |
+
"polyhedron",
|
79 |
+
"positive number",
|
80 |
+
"prism",
|
81 |
+
"pyramid",
|
82 |
+
"quadrant",
|
83 |
+
"quadrilateral",
|
84 |
+
"quartile",
|
85 |
+
"rational number",
|
86 |
+
"reciprocal",
|
87 |
+
"equality",
|
88 |
+
"inequality",
|
89 |
+
"squared",
|
90 |
+
"statistic",
|
91 |
+
"surface area",
|
92 |
+
"identity property",
|
93 |
+
"addend",
|
94 |
+
"unit",
|
95 |
+
"number sentence",
|
96 |
+
"make ten",
|
97 |
+
"take from ten",
|
98 |
+
"number bond",
|
99 |
+
"total",
|
100 |
+
"estimate",
|
101 |
+
"hashmark",
|
102 |
+
"meter",
|
103 |
+
"number line",
|
104 |
+
"ruler",
|
105 |
+
"centimeter",
|
106 |
+
"base ten",
|
107 |
+
"expanded form",
|
108 |
+
"hundred",
|
109 |
+
"thousand",
|
110 |
+
"place value",
|
111 |
+
"number disk",
|
112 |
+
"standard form",
|
113 |
+
"unit form",
|
114 |
+
"word form",
|
115 |
+
"tens place",
|
116 |
+
"algorithm",
|
117 |
+
"equation",
|
118 |
+
"simplif",
|
119 |
+
"addition",
|
120 |
+
"subtract",
|
121 |
+
"array",
|
122 |
+
"even number",
|
123 |
+
"odd number",
|
124 |
+
"repeated addition",
|
125 |
+
"tessellat",
|
126 |
+
"whole number",
|
127 |
+
"number path",
|
128 |
+
"rectangle",
|
129 |
+
"square",
|
130 |
+
"bar graph",
|
131 |
+
"data",
|
132 |
+
"degree",
|
133 |
+
"line plot",
|
134 |
+
"picture graph",
|
135 |
+
"scale",
|
136 |
+
"survey",
|
137 |
+
"thermometer",
|
138 |
+
"estimat",
|
139 |
+
"tape diagram",
|
140 |
+
"value",
|
141 |
+
"analog",
|
142 |
+
"angle",
|
143 |
+
"parallel",
|
144 |
+
"partition",
|
145 |
+
"pentagon",
|
146 |
+
"right angle",
|
147 |
+
"cube",
|
148 |
+
"digital",
|
149 |
+
"quarter of",
|
150 |
+
"tangram",
|
151 |
+
"circle",
|
152 |
+
"hexagon",
|
153 |
+
"half circle",
|
154 |
+
"half-circle",
|
155 |
+
"quarter circle",
|
156 |
+
"quarter-circle",
|
157 |
+
"semicircle",
|
158 |
+
"semi-circle",
|
159 |
+
"rectang",
|
160 |
+
"rhombus",
|
161 |
+
"trapezoid",
|
162 |
+
"triangle",
|
163 |
+
"commutative",
|
164 |
+
"equal group",
|
165 |
+
"distributive",
|
166 |
+
"divide",
|
167 |
+
"division",
|
168 |
+
"multipl",
|
169 |
+
"parentheses",
|
170 |
+
"quotient",
|
171 |
+
"rotate",
|
172 |
+
"unknown",
|
173 |
+
"add",
|
174 |
+
"capacity",
|
175 |
+
"continuous",
|
176 |
+
"endpoint",
|
177 |
+
"gram",
|
178 |
+
"interval",
|
179 |
+
"kilogram",
|
180 |
+
"volume",
|
181 |
+
"liter",
|
182 |
+
"milliliter",
|
183 |
+
"approximate",
|
184 |
+
"area model",
|
185 |
+
"square unit",
|
186 |
+
"unit square",
|
187 |
+
"geometr",
|
188 |
+
"equivalent fraction",
|
189 |
+
"fraction form",
|
190 |
+
"fractional unit",
|
191 |
+
"unit fraction",
|
192 |
+
"unit interval",
|
193 |
+
"measur",
|
194 |
+
"graph",
|
195 |
+
"scaled graph",
|
196 |
+
"diagonal",
|
197 |
+
"perimeter",
|
198 |
+
"regular polygon",
|
199 |
+
"tessellate",
|
200 |
+
"tetromino",
|
201 |
+
"heptagon",
|
202 |
+
"octagon",
|
203 |
+
"digit",
|
204 |
+
"expression",
|
205 |
+
"sum",
|
206 |
+
"kilometer",
|
207 |
+
"mass",
|
208 |
+
"mixed unit",
|
209 |
+
"length",
|
210 |
+
"measure",
|
211 |
+
"simplify",
|
212 |
+
"associative",
|
213 |
+
"composite",
|
214 |
+
"divisible",
|
215 |
+
"divisor",
|
216 |
+
"partial product",
|
217 |
+
"prime number",
|
218 |
+
"remainder",
|
219 |
+
"acute",
|
220 |
+
"arc",
|
221 |
+
"collinear",
|
222 |
+
"equilateral",
|
223 |
+
"intersect",
|
224 |
+
"isosceles",
|
225 |
+
"symmetry",
|
226 |
+
"line segment",
|
227 |
+
"line",
|
228 |
+
"obtuse",
|
229 |
+
"perpendicular",
|
230 |
+
"protractor",
|
231 |
+
"scalene",
|
232 |
+
"straight angle",
|
233 |
+
"supplementary angle",
|
234 |
+
"vertex",
|
235 |
+
"common denominator",
|
236 |
+
"denominator",
|
237 |
+
"fraction",
|
238 |
+
"mixed number",
|
239 |
+
"numerator",
|
240 |
+
"whole",
|
241 |
+
"decimal expanded form",
|
242 |
+
"decimal",
|
243 |
+
"hundredth",
|
244 |
+
"tenth",
|
245 |
+
"customary system of measurement",
|
246 |
+
"customary unit",
|
247 |
+
"gallon",
|
248 |
+
"metric",
|
249 |
+
"metric unit",
|
250 |
+
"ounce",
|
251 |
+
"pint",
|
252 |
+
"quart",
|
253 |
+
"convert",
|
254 |
+
"distance",
|
255 |
+
"millimeter",
|
256 |
+
"thousandth",
|
257 |
+
"hundredths",
|
258 |
+
"conversion factor",
|
259 |
+
"decimal fraction",
|
260 |
+
"multiplier",
|
261 |
+
"equivalence",
|
262 |
+
"multiple",
|
263 |
+
"product",
|
264 |
+
"benchmark fraction",
|
265 |
+
"cup",
|
266 |
+
"pound",
|
267 |
+
"yard",
|
268 |
+
"whole unit",
|
269 |
+
"decimal divisor",
|
270 |
+
"factors",
|
271 |
+
"bisect",
|
272 |
+
"cubic units",
|
273 |
+
"hierarchy",
|
274 |
+
"unit cube",
|
275 |
+
"attribute",
|
276 |
+
"kite",
|
277 |
+
"bisector",
|
278 |
+
"solid figure",
|
279 |
+
"square units",
|
280 |
+
"dimension",
|
281 |
+
"axis",
|
282 |
+
"ordered pair",
|
283 |
+
"angle measure",
|
284 |
+
"horizontal",
|
285 |
+
"vertical",
|
286 |
+
"categorical data",
|
287 |
+
"lcm",
|
288 |
+
"measure of center",
|
289 |
+
"meters per second",
|
290 |
+
"numerical",
|
291 |
+
"solution",
|
292 |
+
"unit price",
|
293 |
+
"unit rate",
|
294 |
+
"variability",
|
295 |
+
"variable",
|
296 |
+
]
|
297 |
+
|
298 |
def get_num_words(text):
|
299 |
if not isinstance(text, str):
|
300 |
print("%s is not a string" % text)
|