hylee
commited on
Commit
·
4a18cf3
1
Parent(s):
c2f7754
update with del
Browse files- handler.py +42 -27
handler.py
CHANGED
@@ -36,8 +36,11 @@ class Utterance:
|
|
36 |
self.role = None
|
37 |
self.word_count = self.get_num_words()
|
38 |
self.timestamp = [starttime, endtime]
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
41 |
self.num_math_terms = None
|
42 |
self.math_terms = None
|
43 |
|
@@ -75,6 +78,7 @@ class Utterance:
|
|
75 |
return{
|
76 |
'speaker': self.speaker,
|
77 |
'text': self.text,
|
|
|
78 |
'role': self.role,
|
79 |
'timestamp': self.timestamp,
|
80 |
'moments': {'reasoning': True if self.reasoning else False, 'questioning': True if self.question else False, 'uptake': True if self.uptake else False, 'focusingQuestion': True if self.focusing_question else False},
|
@@ -137,20 +141,21 @@ class Transcript:
|
|
137 |
utt.role = 'student'
|
138 |
student_words += utt.get_num_words()
|
139 |
student_utt_count += 1
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
|
|
|
|
|
|
145 |
return {'teacher': teacher_percentage, 'student': student_percentage}, {'teacher': avg_teacher_length, 'student': avg_student_length}
|
146 |
|
147 |
-
def
|
148 |
teacher_dict = {}
|
149 |
student_dict = {}
|
150 |
uptake_teacher_dict = {}
|
151 |
stop_words = stopwords.words('english')
|
152 |
-
# stopwords = nltk.corpus.stopwords.word('english')
|
153 |
-
# print("stopwords: ", stopwords)
|
154 |
for utt in self.utterances:
|
155 |
words = (utt.get_clean_text(remove_punct=True)).split(' ')
|
156 |
for word in words:
|
@@ -227,7 +232,7 @@ class QuestionModel:
|
|
227 |
max_length=self.max_length,
|
228 |
input_str=True)
|
229 |
output = self.get_prediction(instance)
|
230 |
-
print(output)
|
231 |
utt.question = np.argmax(
|
232 |
output["is_question_logits"][0].tolist())
|
233 |
|
@@ -255,11 +260,11 @@ class ReasoningModel:
|
|
255 |
self.model = BertForSequenceClassification.from_pretrained(path)
|
256 |
self.model.to(self.device)
|
257 |
|
258 |
-
def run_inference(self, transcript, min_num_words=8):
|
259 |
self.model.eval()
|
260 |
with torch.no_grad():
|
261 |
for i, utt in enumerate(transcript.utterances):
|
262 |
-
if utt.get_num_words() >= min_num_words:
|
263 |
instance = self.input_builder.build_inputs([], utt.text,
|
264 |
max_length=self.max_length,
|
265 |
input_str=True)
|
@@ -372,6 +377,7 @@ def load_math_terms():
|
|
372 |
def run_math_density(transcript):
|
373 |
math_terms, math_terms_dict = load_math_terms()
|
374 |
sorted_terms = sorted(math_terms, key=len, reverse=True)
|
|
|
375 |
for i, utt in enumerate(transcript.utterances):
|
376 |
text = utt.get_clean_text(remove_punct=False)
|
377 |
num_matches = 0
|
@@ -382,12 +388,21 @@ def run_math_density(transcript):
|
|
382 |
# Filter out matches that share positions with longer terms
|
383 |
matches = [match for match in matches if not any(match.start() in range(existing[0], existing[1]) for existing in matched_positions)]
|
384 |
if len(matches) > 0:
|
|
|
|
|
|
|
385 |
match_list.append(math_terms_dict[term])
|
386 |
# Update matched positions
|
387 |
matched_positions.update((match.start(), match.end()) for match in matches)
|
388 |
num_matches += len(matches)
|
389 |
utt.num_math_terms = num_matches
|
390 |
utt.math_terms = match_list
|
|
|
|
|
|
|
|
|
|
|
|
|
391 |
|
392 |
class EndpointHandler():
|
393 |
def __init__(self, path="."):
|
@@ -410,10 +425,6 @@ class EndpointHandler():
|
|
410 |
utterances = data.pop("inputs", data)
|
411 |
params = data.pop("parameters", None)
|
412 |
|
413 |
-
print("EXAMPLES")
|
414 |
-
for utt in utterances[:3]:
|
415 |
-
print("speaker %s: %s" % (utt["speaker"], utt["text"]))
|
416 |
-
|
417 |
transcript = Transcript(filename=params.pop("filename", None))
|
418 |
for utt in utterances:
|
419 |
transcript.add_utterance(Utterance(**utt))
|
@@ -426,34 +437,38 @@ class EndpointHandler():
|
|
426 |
uptake_speaker = params.pop("uptake_speaker", None)
|
427 |
uptake_model.run_inference(transcript, min_prev_words=params['uptake_min_num_words'],
|
428 |
uptake_speaker=uptake_speaker)
|
|
|
|
|
429 |
# Reasoning
|
430 |
reasoning_model = ReasoningModel(
|
431 |
self.device, self.tokenizer, self.input_builder)
|
432 |
-
reasoning_model.run_inference(transcript)
|
433 |
-
|
|
|
434 |
# Question
|
435 |
question_model = QuestionModel(
|
436 |
self.device, self.tokenizer, self.input_builder)
|
437 |
question_model.run_inference(transcript)
|
438 |
-
|
|
|
439 |
# Focusing Question
|
440 |
focusing_question_model = FocusingQuestionModel(
|
441 |
self.device, self.tokenizer, self.input_builder)
|
442 |
focusing_question_model.run_inference(transcript, uptake_speaker=uptake_speaker)
|
443 |
-
|
444 |
-
|
445 |
-
|
446 |
transcript.update_utterance_roles(uptake_speaker)
|
447 |
transcript.calculate_aggregate_word_count()
|
448 |
-
return_dict = {'talkDistribution': None, 'talkLength': None, 'talkMoments': None, 'commonTopWords': None, 'uptakeTopWords': None}
|
449 |
talk_dist, talk_len = transcript.get_talk_distribution_and_length(uptake_speaker)
|
450 |
return_dict['talkDistribution'] = talk_dist
|
451 |
return_dict['talkLength'] = talk_len
|
452 |
talk_moments = transcript.get_talk_timeline()
|
453 |
return_dict['talkMoments'] = talk_moments
|
454 |
-
word_cloud, uptake_word_cloud = transcript.
|
455 |
return_dict['commonTopWords'] = word_cloud
|
456 |
-
return_dict['
|
457 |
-
|
458 |
|
459 |
return return_dict
|
|
|
36 |
self.role = None
|
37 |
self.word_count = self.get_num_words()
|
38 |
self.timestamp = [starttime, endtime]
|
39 |
+
if starttime is not None and endtime is not None:
|
40 |
+
self.unit_measure = endtime - starttime
|
41 |
+
else:
|
42 |
+
self.unit_measure = None
|
43 |
+
self.aggregate_unit_measure = endtime
|
44 |
self.num_math_terms = None
|
45 |
self.math_terms = None
|
46 |
|
|
|
78 |
return{
|
79 |
'speaker': self.speaker,
|
80 |
'text': self.text,
|
81 |
+
'uid': self.uid,
|
82 |
'role': self.role,
|
83 |
'timestamp': self.timestamp,
|
84 |
'moments': {'reasoning': True if self.reasoning else False, 'questioning': True if self.question else False, 'uptake': True if self.uptake else False, 'focusingQuestion': True if self.focusing_question else False},
|
|
|
141 |
utt.role = 'student'
|
142 |
student_words += utt.get_num_words()
|
143 |
student_utt_count += 1
|
144 |
+
if teacher_words + student_words > 0:
|
145 |
+
teacher_percentage = round(
|
146 |
+
(teacher_words / (teacher_words + student_words)) * 100)
|
147 |
+
student_percentage = 100 - teacher_percentage
|
148 |
+
else:
|
149 |
+
teacher_percentage = student_percentage = 0
|
150 |
+
avg_teacher_length = teacher_words / teacher_utt_count if teacher_utt_count > 0 else 0
|
151 |
+
avg_student_length = student_words / student_utt_count if student_utt_count > 0 else 0
|
152 |
return {'teacher': teacher_percentage, 'student': student_percentage}, {'teacher': avg_teacher_length, 'student': avg_student_length}
|
153 |
|
154 |
+
def get_word_clouds(self):
|
155 |
teacher_dict = {}
|
156 |
student_dict = {}
|
157 |
uptake_teacher_dict = {}
|
158 |
stop_words = stopwords.words('english')
|
|
|
|
|
159 |
for utt in self.utterances:
|
160 |
words = (utt.get_clean_text(remove_punct=True)).split(' ')
|
161 |
for word in words:
|
|
|
232 |
max_length=self.max_length,
|
233 |
input_str=True)
|
234 |
output = self.get_prediction(instance)
|
235 |
+
# print(output)
|
236 |
utt.question = np.argmax(
|
237 |
output["is_question_logits"][0].tolist())
|
238 |
|
|
|
260 |
self.model = BertForSequenceClassification.from_pretrained(path)
|
261 |
self.model.to(self.device)
|
262 |
|
263 |
+
def run_inference(self, transcript, min_num_words=8, uptake_speaker=None):
|
264 |
self.model.eval()
|
265 |
with torch.no_grad():
|
266 |
for i, utt in enumerate(transcript.utterances):
|
267 |
+
if utt.get_num_words() >= min_num_words and utt.speaker != uptake_speaker:
|
268 |
instance = self.input_builder.build_inputs([], utt.text,
|
269 |
max_length=self.max_length,
|
270 |
input_str=True)
|
|
|
377 |
def run_math_density(transcript):
|
378 |
math_terms, math_terms_dict = load_math_terms()
|
379 |
sorted_terms = sorted(math_terms, key=len, reverse=True)
|
380 |
+
math_word_cloud = {}
|
381 |
for i, utt in enumerate(transcript.utterances):
|
382 |
text = utt.get_clean_text(remove_punct=False)
|
383 |
num_matches = 0
|
|
|
388 |
# Filter out matches that share positions with longer terms
|
389 |
matches = [match for match in matches if not any(match.start() in range(existing[0], existing[1]) for existing in matched_positions)]
|
390 |
if len(matches) > 0:
|
391 |
+
if math_terms_dict[term] not in math_word_cloud:
|
392 |
+
math_word_cloud[math_terms_dict[term]] = 0
|
393 |
+
math_word_cloud[math_terms_dict[term]] += len(matches)
|
394 |
match_list.append(math_terms_dict[term])
|
395 |
# Update matched positions
|
396 |
matched_positions.update((match.start(), match.end()) for match in matches)
|
397 |
num_matches += len(matches)
|
398 |
utt.num_math_terms = num_matches
|
399 |
utt.math_terms = match_list
|
400 |
+
dict_list = []
|
401 |
+
for word in math_word_cloud.keys():
|
402 |
+
dict_list.append(
|
403 |
+
{'text': word, 'value': math_word_cloud[word]})
|
404 |
+
sorted_dict_list = sorted(dict_list, key=lambda x: x['value'], reverse=True)
|
405 |
+
return sorted_dict_list[:50]
|
406 |
|
407 |
class EndpointHandler():
|
408 |
def __init__(self, path="."):
|
|
|
425 |
utterances = data.pop("inputs", data)
|
426 |
params = data.pop("parameters", None)
|
427 |
|
|
|
|
|
|
|
|
|
428 |
transcript = Transcript(filename=params.pop("filename", None))
|
429 |
for utt in utterances:
|
430 |
transcript.add_utterance(Utterance(**utt))
|
|
|
437 |
uptake_speaker = params.pop("uptake_speaker", None)
|
438 |
uptake_model.run_inference(transcript, min_prev_words=params['uptake_min_num_words'],
|
439 |
uptake_speaker=uptake_speaker)
|
440 |
+
del uptake_model
|
441 |
+
|
442 |
# Reasoning
|
443 |
reasoning_model = ReasoningModel(
|
444 |
self.device, self.tokenizer, self.input_builder)
|
445 |
+
reasoning_model.run_inference(transcript, uptake_speaker=uptake_speaker)
|
446 |
+
del reasoning_model
|
447 |
+
|
448 |
# Question
|
449 |
question_model = QuestionModel(
|
450 |
self.device, self.tokenizer, self.input_builder)
|
451 |
question_model.run_inference(transcript)
|
452 |
+
del question_model
|
453 |
+
|
454 |
# Focusing Question
|
455 |
focusing_question_model = FocusingQuestionModel(
|
456 |
self.device, self.tokenizer, self.input_builder)
|
457 |
focusing_question_model.run_inference(transcript, uptake_speaker=uptake_speaker)
|
458 |
+
del focusing_question_model
|
459 |
+
|
460 |
+
math_cloud = run_math_density(transcript)
|
461 |
transcript.update_utterance_roles(uptake_speaker)
|
462 |
transcript.calculate_aggregate_word_count()
|
463 |
+
return_dict = {'talkDistribution': None, 'talkLength': None, 'talkMoments': None, 'commonTopWords': None, 'uptakeTopWords': None, 'mathTopWords': None}
|
464 |
talk_dist, talk_len = transcript.get_talk_distribution_and_length(uptake_speaker)
|
465 |
return_dict['talkDistribution'] = talk_dist
|
466 |
return_dict['talkLength'] = talk_len
|
467 |
talk_moments = transcript.get_talk_timeline()
|
468 |
return_dict['talkMoments'] = talk_moments
|
469 |
+
word_cloud, uptake_word_cloud = transcript.get_word_clouds()
|
470 |
return_dict['commonTopWords'] = word_cloud
|
471 |
+
return_dict['uptakeTopWords'] = uptake_word_cloud
|
472 |
+
return_dict['mathTopWords'] = math_cloud
|
473 |
|
474 |
return return_dict
|