hylee
commited on
Commit
·
f776d9e
1
Parent(s):
c9e7917
clean up
Browse files- handler.py +1 -71
handler.py
CHANGED
@@ -31,7 +31,6 @@ class Utterance:
|
|
31 |
self.role = None
|
32 |
self.word_count = self.get_num_words()
|
33 |
self.timestamp = [starttime, endtime]
|
34 |
-
# self.unit_measure = endtime - starttime
|
35 |
self.unit_measure = None
|
36 |
self.aggregate_unit_measure = endtime
|
37 |
|
@@ -310,94 +309,25 @@ class EndpointHandler():
|
|
310 |
transcript.add_utterance(Utterance(**utt))
|
311 |
|
312 |
print("Running inference on %d examples..." % transcript.length())
|
313 |
-
# cpu_percent = psutil.cpu_percent()
|
314 |
logging.set_verbosity_info()
|
315 |
-
# logger = logging.get_logger("transformers")
|
316 |
-
# logger.info(f"CPU Usage before models loaded: {cpu_percent}%")
|
317 |
-
# mem_info = psutil.virtual_memory()
|
318 |
-
# used_mem = mem_info.used / (1024 ** 3) # Convert to gigabytes
|
319 |
-
# total_mem = mem_info.total / (1024 ** 3) # Convert to gigabytes
|
320 |
-
# logger.info(
|
321 |
-
# f"Used Memory before models loaded: {used_mem:.2f} GB, Total RAM: {total_mem:.2f} GB")
|
322 |
-
|
323 |
# Uptake
|
324 |
uptake_model = UptakeModel(
|
325 |
self.device, self.tokenizer, self.input_builder)
|
326 |
uptake_speaker = params.pop("uptake_speaker", None)
|
327 |
uptake_model.run_inference(transcript, min_prev_words=params['uptake_min_num_words'],
|
328 |
uptake_speaker=uptake_speaker)
|
329 |
-
|
330 |
-
# cpu_percent = psutil.cpu_percent()
|
331 |
-
# mem_info = psutil.virtual_memory()
|
332 |
-
# used_mem = mem_info.used / (1024 ** 3) # Convert to gigabytes
|
333 |
-
# total_mem = mem_info.total / (1024 ** 3) # Convert to gigabytes
|
334 |
-
# logger.info(
|
335 |
-
# f"Used Memory after model 1 loaded: {used_mem:.2f} GB, Total Mem: {total_mem:.2f} GB")
|
336 |
-
# logger.info(f"CPU Usage after model 1 loaded: {cpu_percent}%")
|
337 |
-
# del uptake_model
|
338 |
-
# cpu_percent = psutil.cpu_percent()
|
339 |
-
# mem_info = psutil.virtual_memory()
|
340 |
-
# used_mem = mem_info.used / (1024 ** 3) # Convert to gigabytes
|
341 |
-
# total_mem = mem_info.total / (1024 ** 3) # Convert to gigabytes
|
342 |
-
# logger.info(f"Used Memory after model 1 deleted: {used_mem:.2f} GB, Total Mem: {total_mem:.2f} GB")
|
343 |
-
# logger.info(f"CPU Usage after model 1 deleted: {cpu_percent}%")
|
344 |
# Reasoning
|
345 |
reasoning_model = ReasoningModel(
|
346 |
self.device, self.tokenizer, self.input_builder)
|
347 |
reasoning_model.run_inference(transcript)
|
348 |
-
|
349 |
-
# mem_info = psutil.virtual_memory()
|
350 |
-
# used_mem = mem_info.used / (1024 ** 3) # Convert to gigabytes
|
351 |
-
# total_mem = mem_info.total / (1024 ** 3) # Convert to gigabytes
|
352 |
-
# logger.info(
|
353 |
-
# f"Used Memory after model 2 loaded: {used_mem:.2f} GB, Total Mem: {total_mem:.2f} GB")
|
354 |
-
# logger.info(f"CPU Usage after model 2 loaded: {cpu_percent}%")
|
355 |
-
# # print(f"CPU Usage after model 2 loaded: {cpu_percent}%")
|
356 |
-
# # del reasoning_model
|
357 |
-
# cpu_percent = psutil.cpu_percent()
|
358 |
-
# mem_info = psutil.virtual_memory()
|
359 |
-
# used_mem = mem_info.used / (1024 ** 3) # Convert to gigabytes
|
360 |
-
# total_mem = mem_info.total / (1024 ** 3) # Convert to gigabytes
|
361 |
-
# logger.info(f"Used Memory after model 2 deleted: {used_mem:.2f} GB, Total Mem: {total_mem:.2f} GB")
|
362 |
-
# logger.info(f"CPU Usage after model 2 deleted: {cpu_percent}%")
|
363 |
-
# print(f"CPU Usage after model 2 deleted: {cpu_percent}%")
|
364 |
# Question
|
365 |
question_model = QuestionModel(
|
366 |
self.device, self.tokenizer, self.input_builder)
|
367 |
question_model.run_inference(transcript)
|
368 |
-
# cpu_percent = psutil.cpu_percent()
|
369 |
-
# logger.info(f"CPU Usage after model 3 loaded: {cpu_percent}%")
|
370 |
-
# mem_info = psutil.virtual_memory()
|
371 |
-
# used_mem = mem_info.used / (1024 ** 3) # Convert to gigabytes
|
372 |
-
# total_mem = mem_info.total / (1024 ** 3) # Convert to gigabytes
|
373 |
-
# logger.info(
|
374 |
-
# f"Used Memory after model 3 loaded: {used_mem:.2f} GB, Total Mem: {total_mem:.2f} GB")
|
375 |
-
# print(f"CPU Usage after model 3 loaded: {cpu_percent}%")
|
376 |
-
# del question_model
|
377 |
-
# cpu_percent = psutil.cpu_percent()
|
378 |
-
# logger.info(f"CPU Usage after model 3 deleted: {cpu_percent}%")
|
379 |
-
# mem_info = psutil.virtual_memory()
|
380 |
-
# used_mem = mem_info.used / (1024 ** 3) # Convert to gigabytes
|
381 |
-
# total_mem = mem_info.total / (1024 ** 3) # Convert to gigabytes
|
382 |
-
# logger.info(f"Used Memory after model 3 deleted: {used_mem:.2f} GB, Total Mem: {total_mem:.2f} GB")
|
383 |
-
# print(f"CPU Usage after model 3 deleted: {cpu_percent}%")
|
384 |
transcript.update_utterance_roles
|
385 |
talk_dist, talk_len = transcript.get_talk_distribution_and_length(uptake_speaker)
|
386 |
talk_timeline = transcript.get_talk_timeline()
|
387 |
word_cloud = transcript.get_word_cloud_dicts()
|
388 |
|
389 |
-
# return transcript.to_dict(), talk_dist, talk_len, talk_timeline, word_cloud
|
390 |
return talk_dist, talk_len, talk_timeline, word_cloud
|
391 |
-
|
392 |
-
# {
|
393 |
-
# "inputs": [
|
394 |
-
# {"uid": "1", "speaker": "Alice", "text": "How much is the fish?" },
|
395 |
-
# {"uid": "2", "speaker": "Bob", "text": "I do not know about the fish. Because you put a long side and it’s a long side. What do you think." },
|
396 |
-
# {"uid": "3", "speaker": "Alice", "text": "OK, thank you Bob." }
|
397 |
-
# ],
|
398 |
-
# "parameters": {
|
399 |
-
# "uptake_min_num_words": 5,
|
400 |
-
# "uptake_speaker": "Bob",
|
401 |
-
# "filename": "sample.csv"
|
402 |
-
# }
|
403 |
-
# }
|
|
|
31 |
self.role = None
|
32 |
self.word_count = self.get_num_words()
|
33 |
self.timestamp = [starttime, endtime]
|
|
|
34 |
self.unit_measure = None
|
35 |
self.aggregate_unit_measure = endtime
|
36 |
|
|
|
309 |
transcript.add_utterance(Utterance(**utt))
|
310 |
|
311 |
print("Running inference on %d examples..." % transcript.length())
|
|
|
312 |
logging.set_verbosity_info()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
313 |
# Uptake
|
314 |
uptake_model = UptakeModel(
|
315 |
self.device, self.tokenizer, self.input_builder)
|
316 |
uptake_speaker = params.pop("uptake_speaker", None)
|
317 |
uptake_model.run_inference(transcript, min_prev_words=params['uptake_min_num_words'],
|
318 |
uptake_speaker=uptake_speaker)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
319 |
# Reasoning
|
320 |
reasoning_model = ReasoningModel(
|
321 |
self.device, self.tokenizer, self.input_builder)
|
322 |
reasoning_model.run_inference(transcript)
|
323 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
324 |
# Question
|
325 |
question_model = QuestionModel(
|
326 |
self.device, self.tokenizer, self.input_builder)
|
327 |
question_model.run_inference(transcript)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
328 |
transcript.update_utterance_roles
|
329 |
talk_dist, talk_len = transcript.get_talk_distribution_and_length(uptake_speaker)
|
330 |
talk_timeline = transcript.get_talk_timeline()
|
331 |
word_cloud = transcript.get_word_cloud_dicts()
|
332 |
|
|
|
333 |
return talk_dist, talk_len, talk_timeline, word_cloud
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|