File size: 816 Bytes
0271ea4 2299201 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 |
# A model for predicting the gender of author of news article
## Usage:
```
import re
from transformers import pipeline
from html import unescape
from unicodedata import normalize
re_multispace = re.compile(r"\s+")
def normalize_text(text):
if text == None:
return None
text = text.strip()
text = text.replace("\n", " ")
text = text.replace("\t", " ")
text = text.replace("\r", " ")
text = re_multispace.sub(" ", text)
text = unescape(text)
text = normalize("NFKC", text)
return text
model = pipeline(task="text-classification",
model=f"hynky/Gender", tokenizer="ufal/robeczech-base",
truncation=True, max_length=512,
top_k=5
)
def predict(article):
article = normalize_text(article)
predictions = model(article)
predict("Dnes v noci bude pršet.")
``` |