File size: 2,116 Bytes
a5f57c9 99c5625 b151839 a5f57c9 8d4aab4 3a73e35 8d4aab4 3a73e35 8d4aab4 3a73e35 8d4aab4 3a73e35 8d4aab4 3a73e35 8d4aab4 3a73e35 8d4aab4 3a73e35 8d4aab4 3a73e35 8d4aab4 3a73e35 8d4aab4 3a73e35 8d4aab4 99c5625 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
---
license: mit
datasets:
- McAuley-Lab/Amazon-Reviews-2023
language:
- en
tags:
- recommendation
- information retrieval
- Amazon Reviews 2023
base_model: FacebookAI/roberta-base
---
# BLaIR-roberta-base
<!-- Provide a quick summary of what the model is/does. -->
BLaIR, which is short for "**B**ridging **La**nguage and **I**tems for **R**etrieval and **R**ecommendation", is a series of language models pre-trained on Amazon Reviews 2023 dataset.
BLaIR is grounded on pairs of *(item metadata, language context)*, enabling the models to:
* derive strong item text representations, for both recommendation and retrieval;
* predict the most relevant item given simple / complex language context.
[[馃搼 Paper](https://arxiv.org/abs/2403.03952)] 路 [[馃捇 Code](https://github.com/hyp1231/AmazonReviews2023)] 路 [[馃寪 Amazon Reviews 2023 Dataset](https://amazon-reviews-2023.github.io/)] 路 [[馃 Huggingface Datasets](https://huggingface.co/datasets/McAuley-Lab/Amazon-Reviews-2023)] 路 [[馃敩 McAuley Lab](https://cseweb.ucsd.edu/~jmcauley/)]
## Model Details
- **Language(s) (NLP):** English
- **License:** MIT
- **Finetuned from model:** [roberta-base](https://huggingface.co/FacebookAI/roberta-base)
- **Repository:** [https://github.com/hyp1231/AmazonReviews2023](https://github.com/hyp1231/AmazonReviews2023)
- **Paper:** [https://arxiv.org/abs/2403.03952](https://arxiv.org/abs/2403.03952)
## Citation
If you find Amazon Reviews 2023 dataset, BLaIR checkpoints, Amazon-C4 dataset, or our scripts/code helpful, please cite the following paper.
```bibtex
@article{hou2024bridging,
title={Bridging Language and Items for Retrieval and Recommendation},
author={Hou, Yupeng and Li, Jiacheng and He, Zhankui and Yan, An and Chen, Xiusi and McAuley, Julian},
journal={arXiv preprint arXiv:2403.03952},
year={2024}
}
```
## Contact
Please let us know if you encounter a bug or have any suggestions/questions by [filling an issue](https://github.com/hyp1231/AmazonReview2023/issues/new) or emailing Yupeng Hou ([@hyp1231](https://github.com/hyp1231)) at [yphou@ucsd.edu](mailto:yphou@ucsd.edu). |