File size: 2,116 Bytes
a5f57c9
 
99c5625
 
 
 
 
 
 
 
b151839
a5f57c9
8d4aab4
3a73e35
8d4aab4
 
 
3a73e35
8d4aab4
3a73e35
 
 
8d4aab4
3a73e35
8d4aab4
3a73e35
8d4aab4
3a73e35
 
 
 
 
8d4aab4
3a73e35
8d4aab4
3a73e35
8d4aab4
3a73e35
 
 
 
 
 
 
 
8d4aab4
3a73e35
8d4aab4
99c5625
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
---
license: mit
datasets:
- McAuley-Lab/Amazon-Reviews-2023
language:
- en
tags:
- recommendation
- information retrieval
- Amazon Reviews 2023
base_model: FacebookAI/roberta-base
---

# BLaIR-roberta-base

<!-- Provide a quick summary of what the model is/does. -->

BLaIR, which is short for "**B**ridging **La**nguage and **I**tems for **R**etrieval and **R**ecommendation", is a series of language models pre-trained on Amazon Reviews 2023 dataset.

BLaIR is grounded on pairs of *(item metadata, language context)*, enabling the models to:
* derive strong item text representations, for both recommendation and retrieval;
* predict the most relevant item given simple / complex language context.

[[馃搼 Paper](https://arxiv.org/abs/2403.03952)] 路 [[馃捇 Code](https://github.com/hyp1231/AmazonReviews2023)] 路 [[馃寪 Amazon Reviews 2023 Dataset](https://amazon-reviews-2023.github.io/)] 路 [[馃 Huggingface Datasets](https://huggingface.co/datasets/McAuley-Lab/Amazon-Reviews-2023)] 路 [[馃敩 McAuley Lab](https://cseweb.ucsd.edu/~jmcauley/)]

## Model Details

- **Language(s) (NLP):** English
- **License:** MIT
- **Finetuned from model:** [roberta-base](https://huggingface.co/FacebookAI/roberta-base)
- **Repository:** [https://github.com/hyp1231/AmazonReviews2023](https://github.com/hyp1231/AmazonReviews2023)
- **Paper:** [https://arxiv.org/abs/2403.03952](https://arxiv.org/abs/2403.03952)

## Citation

If you find Amazon Reviews 2023 dataset, BLaIR checkpoints, Amazon-C4 dataset, or our scripts/code helpful, please cite the following paper.

```bibtex
@article{hou2024bridging,
  title={Bridging Language and Items for Retrieval and Recommendation},
  author={Hou, Yupeng and Li, Jiacheng and He, Zhankui and Yan, An and Chen, Xiusi and McAuley, Julian},
  journal={arXiv preprint arXiv:2403.03952},
  year={2024}
}
```

## Contact

Please let us know if you encounter a bug or have any suggestions/questions by [filling an issue](https://github.com/hyp1231/AmazonReview2023/issues/new) or emailing Yupeng Hou ([@hyp1231](https://github.com/hyp1231)) at [yphou@ucsd.edu](mailto:yphou@ucsd.edu).