imdb-recommender / recommender.py
hzonuz's picture
Create recommender.py
7637ffd
raw
history blame
10.7 kB
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from ast import literal_eval
import gc
from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics.pairwise import cosine_similarity
# import seaborn as sns
from collections import Counter
import mlflow
def init_mlflow():
mlflow.set_tracking_uri("http://0.0.0.0:8889")
mlflow.set_experiment("Default")
mlflow.start_run()
mlflow.sklearn.autolog()
def load_data():
credits_df = pd.read_csv('./datasets/credits.csv')
keywords_df = pd.read_csv('./datasets/keywords.csv')
links_df = pd.read_csv('./datasets/links_small.csv')
movies_df = pd.read_csv('./datasets/movies_metadata.csv')
ratings_df = pd.read_csv('./datasets/ratings_small.csv')
return credits_df, keywords_df, links_df, movies_df, ratings_df
def draw_adult_movies_pie_chart(movies_df):
plt.figure(figsize=(8, 4))
plt.scatter(x=[0.5, 1.5], y=[1, 1], s=15000, color=['#06837f', '#fdc100'])
plt.xlim(0, 2)
plt.ylim(0.9, 1.2)
plt.title('Distribution of Adult and Non Adult Movies', fontsize=18, weight=600, color='#333d29')
plt.text(0.5, 1, '{}\nMovies'.format(str(len(movies_df[movies_df['adult'] == 'True']))), va='center', ha='center',
fontsize=18, weight=600, color='white')
plt.text(1.5, 1, '{}\nMovies'.format(str(len(movies_df[movies_df['adult'] == 'False']))), va='center', ha='center',
fontsize=18, weight=600, color='white')
plt.text(0.5, 1.11, 'Adult', va='center', ha='center', fontsize=17, weight=500, color='#1c2541')
plt.text(1.5, 1.11, 'Non Adult', va='center', ha='center', fontsize=17, weight=500, color='#1c2541')
plt.axis('off')
plt.savefig('adult.png')
mlflow.log_artifact('adult.png')
def draw_genres_pie_chart(df):
genres_list = []
for i in df['genres']:
i = i[1:]
i = i[:-1]
genres_list.extend(i.split(', '))
fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(14, 6))
df_plot = pd.DataFrame(Counter(genres_list).most_common(5), columns=['genre', 'total'])
# ax = sns.barplot(data=df_plot, x='genre', y='total', ax=axes[0],
# palette=['#06837f', '#02cecb', '#b4ffff', '#f8e16c', '#fed811'])
# ax.set_title('Top 5 Genres in Movies', fontsize=18, weight=600, color='#333d29')
# sns.despine()
df_plot_full = pd.DataFrame([Counter(genres_list)]).transpose().sort_values(by=0, ascending=False)
df_plot.loc[len(df_plot)] = {'genre': 'Others', 'total': df_plot_full[6:].sum()[0]}
plt.title('Percentage Ratio of Movie Genres', fontsize=18, weight=600, color='#333d29')
wedges, texts, autotexts = axes[1].pie(x=df_plot['total'], labels=df_plot['genre'], autopct='%.2f%%',
textprops=dict(fontsize=14), explode=[0, 0, 0, 0, 0, 0.1],
colors=['#06837f', '#02cecb', '#b4ffff', '#f8e16c', '#fed811', '#fdc100'])
for autotext in autotexts:
autotext.set_color('#1c2541')
autotext.set_weight('bold')
axes[1].axis('off')
plt.savefig('genres.png')
mlflow.log_artifact('genres.png')
def director(x):
for i in x:
if i["job"] == "Director":
return i["name"]
return ""
def writer_screenplay(x):
names = []
for i in x:
if (i["job"] == "Writer") | (i["job"] == "Screenplay") | (i["job"] == "Author"):
name = i["name"]
names.append(name)
return names
def calculate_cosine_similarity(train_df):
cosine_sim = cosine_similarity(train_df)
return cosine_sim
def clean_data(credits_df, keywords_df, movies_df):
# draw_adult_movies_pie_chart(movies_df)
# Cast id column to int
movies_df["id"] = movies_df["id"].apply(pd.to_numeric, errors="ignore")
keywords_df["id"] = keywords_df["id"].apply(int)
credits_df["id"] = credits_df["id"].apply(int)
# Merge movies, keywords, credits based on id column
df = movies_df.merge(keywords_df, on="id").merge(credits_df, on="id")
"""Cleaning our merged data from from duplicated and null values"""
# Find null values in our merged data frame
df.isnull().sum()
# Remove duplicated values with the same titles
df.drop_duplicates(subset=["title", "id"], inplace=True)
# Remove movies with null titles
df = df[df.title.notnull()]
# Find number of movies with vote count < 30
(df.vote_count < 30).sum()
# Remove movies with vote count < 30
df = df[df.vote_count > 30]
# Make release data numeric
df["release_date"] = pd.to_datetime(df['release_date'])
df["release_year"] = df["release_date"].dt.year
df.drop("release_date", axis=1, inplace=True)
# Remove null values
df = df[df["release_year"].notnull()]
df = df[df["runtime"].notnull()]
# Make vote_average and release_year column categorical and normalize them
df["vote_average_bins"] = pd.cut(df["vote_average"].astype(float), 10, labels=range(1, 11))
scaler = MinMaxScaler()
df["vote_average_bins"] = df["vote_average_bins"].astype(int)
df["vote_average_bins"] = scaler.fit_transform(df["vote_average_bins"].values.reshape(-1, 1))
df["release_year_bins"] = pd.qcut(df["release_year"].astype(float), q=10, labels=range(1, 11))
scaler = MinMaxScaler()
df["release_year_bins"] = df["release_year_bins"].astype(int)
df["release_year_bins"] = scaler.fit_transform(df["release_year_bins"].values.reshape(-1, 1))
# Set data frame primary index to title
df.set_index("title", inplace=True)
# Make languages one-hotted
languages = pd.get_dummies(df["original_language"])
# Extract genre name from json
df['genres'] = df['genres'].fillna('[]').apply(literal_eval).apply(
lambda x: [i['name'] for i in x] if isinstance(x, list) else "")
df["genres"] = df["genres"].astype(str)
# draw_genres_pie_chart(df)
# Make genres one-hotted
cv = CountVectorizer(lowercase=False)
genres = cv.fit_transform(df["genres"])
genres_df = pd.DataFrame(genres.todense(), columns=cv.get_feature_names_out())
genres_df.set_index(df.index, inplace=True)
# Make keywords,tagline,overview one-hotted
df['keywords'] = df['keywords'].fillna('[]').apply(literal_eval).apply(
lambda x: [i['name'] for i in x] if isinstance(x, list) else "")
df["keywords"] = df["keywords"].astype(str)
df["tagline"].fillna("", inplace=True)
df["overview"].fillna("", inplace=True)
df["keywords"].fillna("", inplace=True)
df["text"] = df["overview"] + df["tagline"] + df["keywords"]
tfidf = TfidfVectorizer(max_features=5000)
tfidf_matrix = tfidf.fit_transform(df["text"])
tfidf_df = pd.DataFrame(tfidf_matrix.todense(), columns=tfidf.get_feature_names_out())
tfidf_df.set_index(df.index, inplace=True)
# Make cast one-hotted
df['cast'] = df['cast'].fillna('[]').apply(literal_eval).apply(
lambda x: [i['name'] for i in x] if isinstance(x, list) else "")
df["cast"] = df["cast"].apply(lambda x: [c.replace(" ", "") for c in x])
df["cast"] = df["cast"].apply(lambda x: x[:15])
df["CC"] = df["cast"].astype(str)
cv = CountVectorizer(lowercase=False, min_df=4)
cast = cv.fit_transform(df["CC"])
cast_df = pd.DataFrame(cast.todense(), columns=cv.get_feature_names_out())
cast_df.set_index(df.index, inplace=True)
df["dir"] = df["crew"].apply(literal_eval).apply(director)
directors = pd.get_dummies(df["dir"])
df["writer_screenplay"] = df["crew"].apply(literal_eval).apply(writer_screenplay)
df["writer_screenplay"] = df["writer_screenplay"].apply(lambda x: [c.replace(" ", "") for c in x])
df["writer_screenplay"] = df["writer_screenplay"].apply(lambda x: x[:3])
df["writer_screenplay"] = df["writer_screenplay"].astype(str)
cv = CountVectorizer(lowercase=False, min_df=2)
writing = cv.fit_transform(df["writer_screenplay"])
writing_df = pd.DataFrame(writing.todense(), columns=cv.get_feature_names_out())
writing_df.set_index(df.index, inplace=True)
gc.collect()
train_df = pd.concat([languages, genres_df, cast_df, writing_df, directors, tfidf_df], axis=1)
train_df = train_df.astype(np.int8)
gc.collect()
return train_df, df
class RecommenderSystem(mlflow.pyfunc.PythonModel):
def load_context(self, context):
credits_df, keywords_df, links_df, movies_df, ratings_df = load_data()
self.train_df, self.df = clean_data(credits_df, keywords_df, movies_df)
self.cosine_sim = calculate_cosine_similarity(self.train_df)
def predict(self, context, model_input):
return self.recommend(model_input[0], self.cosine_sim)
def recommend(self, title, cosine_sim):
indices = pd.Series(range(0, len(self.train_df.index)), index=self.train_df.index).drop_duplicates()
number = 10
# Get the index of the movie that matches the title
idx = indices[title]
# Get the pairwsie similarity scores of all movies with that movie
sim_scores = list(enumerate(cosine_sim[idx]))
# Sort the movies based on the similarity scores
sim_scores = sorted(sim_scores, key=lambda x: x[1], reverse=True)
scores_arr = np.array(sim_scores)
scores_mean = np.average(scores_arr, axis=0)
mlflow.log_metric("cosine-total-avg", scores_mean[1])
# Get the scores of the 10 most similar movies
sim_scores = sim_scores[1:number + 1]
scores_arr = np.array(sim_scores)
scores_mean = np.average(scores_arr, axis=0)
mlflow.log_metric("cosine-result-avg", scores_mean[1])
mlflow.log_metric("cosine-result-max", sim_scores[0][1])
mlflow.log_metric("cosine-result-min", sim_scores[number - 1][1])
mlflow.log_param("number-of-results", number)
# Get the movie indices
movie_indices = [i[0] for i in sim_scores]
recommendations = pd.DataFrame({"Movies": self.df.iloc[movie_indices].index.tolist(),
"Id": self.df.iloc[movie_indices].imdb_id.tolist(),
"Similarity": [sim[1] for sim in sim_scores]})
return recommendations
if __name__ == '__main__':
mlflow.pyfunc.save_model(path="imdb-recommendation-v2", python_model=RecommenderSystem())
init_mlflow()
mlflow.pyfunc.log_model("imdb-recommendation-v2", python_model=RecommenderSystem(), registered_model_name="recommendation-model-v2")
loaded_model = mlflow.pyfunc.load_model("imdb-recommendation-v2")
print(loaded_model.predict(["The Dark Knight Rises"]))
mlflow.end_run()