i-dont-hug-face
commited on
Commit
•
8a8276e
1
Parent(s):
e49dc7d
Update inference.py
Browse files- inference.py +33 -32
inference.py
CHANGED
@@ -1,10 +1,10 @@
|
|
1 |
-
import os
|
2 |
import torch
|
3 |
import re
|
4 |
from PIL import Image
|
5 |
from transformers import DonutProcessor, VisionEncoderDecoderModel
|
6 |
import base64
|
7 |
import io
|
|
|
8 |
|
9 |
def model_fn(model_dir):
|
10 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
@@ -13,38 +13,39 @@ def model_fn(model_dir):
|
|
13 |
model.to(device)
|
14 |
return model, processor, device
|
15 |
|
16 |
-
def
|
17 |
-
|
|
|
18 |
data = json.loads(request_body)
|
19 |
image_data = data['inputs']
|
20 |
image = Image.open(io.BytesIO(base64.b64decode(image_data))).convert("RGB")
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
else:
|
23 |
-
raise ValueError(f"Unsupported content type: {
|
24 |
-
|
25 |
-
def predict_fn(input_data, model_and_processor):
|
26 |
-
model, processor, device = model_and_processor
|
27 |
-
pixel_values = processor(input_data, return_tensors="pt").pixel_values.to(device)
|
28 |
-
|
29 |
-
model.eval()
|
30 |
-
with torch.no_grad():
|
31 |
-
task_prompt = "<s_receipt>"
|
32 |
-
decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids.to(device)
|
33 |
-
generated_outputs = model.generate(
|
34 |
-
pixel_values,
|
35 |
-
decoder_input_ids=decoder_input_ids,
|
36 |
-
max_length=model.config.decoder.max_position_embeddings,
|
37 |
-
pad_token_id=processor.tokenizer.pad_token_id,
|
38 |
-
eos_token_id=processor.tokenizer.eos_token_id,
|
39 |
-
early_stopping=True,
|
40 |
-
bad_words_ids=[[processor.tokenizer.unk_token_id]],
|
41 |
-
return_dict_in_generate=True
|
42 |
-
)
|
43 |
-
|
44 |
-
decoded_text = processor.batch_decode(generated_outputs.sequences)[0]
|
45 |
-
decoded_text = decoded_text.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
|
46 |
-
decoded_text = re.sub(r"<.*?>", "", decoded_text, count=1).strip()
|
47 |
-
return decoded_text
|
48 |
-
|
49 |
-
def output_fn(prediction, accept):
|
50 |
-
return json.dumps({'result': prediction}), accept
|
|
|
|
|
1 |
import torch
|
2 |
import re
|
3 |
from PIL import Image
|
4 |
from transformers import DonutProcessor, VisionEncoderDecoderModel
|
5 |
import base64
|
6 |
import io
|
7 |
+
import json
|
8 |
|
9 |
def model_fn(model_dir):
|
10 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
|
13 |
model.to(device)
|
14 |
return model, processor, device
|
15 |
|
16 |
+
def transform_fn(model, request_body, input_content_type, output_content_type):
|
17 |
+
model, processor, device = model
|
18 |
+
if input_content_type == 'application/json':
|
19 |
data = json.loads(request_body)
|
20 |
image_data = data['inputs']
|
21 |
image = Image.open(io.BytesIO(base64.b64decode(image_data))).convert("RGB")
|
22 |
+
|
23 |
+
# Preprocess the image
|
24 |
+
pixel_values = processor(image, return_tensors="pt").pixel_values.to(device)
|
25 |
+
|
26 |
+
# Run inference
|
27 |
+
model.eval()
|
28 |
+
with torch.no_grad():
|
29 |
+
task_prompt = "<s_receipt>"
|
30 |
+
decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids.to(device)
|
31 |
+
generated_outputs = model.generate(
|
32 |
+
pixel_values,
|
33 |
+
decoder_input_ids=decoder_input_ids,
|
34 |
+
max_length=model.config.decoder.max_position_embeddings,
|
35 |
+
pad_token_id=processor.tokenizer.pad_token_id,
|
36 |
+
eos_token_id=processor.tokenizer.eos_token_id,
|
37 |
+
early_stopping=True,
|
38 |
+
bad_words_ids=[[processor.tokenizer.unk_token_id]],
|
39 |
+
return_dict_in_generate=True
|
40 |
+
)
|
41 |
+
|
42 |
+
# Decode the output
|
43 |
+
decoded_text = processor.batch_decode(generated_outputs.sequences)[0]
|
44 |
+
decoded_text = decoded_text.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
|
45 |
+
decoded_text = re.sub(r"<.*?>", "", decoded_text, count=1).strip()
|
46 |
+
|
47 |
+
# Prepare the response
|
48 |
+
prediction = {'result': decoded_text}
|
49 |
+
return json.dumps(prediction), output_content_type
|
50 |
else:
|
51 |
+
raise ValueError(f"Unsupported content type: {input_content_type}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|