iKyalo commited on
Commit
f5ad2c9
·
verified ·
1 Parent(s): f900410

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 241.34 +/- 20.59
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7b936df9a4d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b936df9a560>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b936df9a5f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b936df9a680>", "_build": "<function ActorCriticPolicy._build at 0x7b936df9a710>", "forward": "<function ActorCriticPolicy.forward at 0x7b936df9a7a0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b936df9a830>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b936df9a8c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7b936df9a950>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b936df9a9e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b936df9aa70>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b936df9ab00>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b936e138800>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1721803852450907875, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAEC8YT5mSuM+LF8Qvs+mXb5kW2I8GpDYOwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGuuy3Td+G6MAWyUTdIBjAF0lEdAnK0ZIMBp6HV9lChoBkdAbzQWtU4rBmgHTcMBaAhHQJyv9qWTouB1fZQoaAZHQHBQV41P3ztoB02tAWgIR0CctJ3t8eCDdX2UKGgGR0BvRF/OMVDbaAdNigFoCEdAnLe9+ocaO3V9lChoBkdAb2f+3H7xeGgHTXYBaAhHQJy8DJA+pwV1fZQoaAZHQG71xagVXV9oB017AWgIR0Ccvis+3YthdX2UKGgGR0Bwe646Oo5xaAdNYAFoCEdAnMAsFt8/lnV9lChoBkdAbMZOD8LromgHTYsBaAhHQJzDjdYW+Gp1fZQoaAZHQG/GQJw84gloB025AWgIR0Ccxhqx1PnCdX2UKGgGR0Bwfxkd3jdYaAdNjgFoCEdAnMhgKa5PM3V9lChoBkdAb3iM2m51/2gHTW8BaAhHQJzLr5aePJd1fZQoaAZHQGyhT3qRlpZoB01pAWgIR0Cczd47ihnKdX2UKGgGR0Bi558WsRxtaAdN6ANoCEdAnNTlaGHpKXV9lChoBkdAcNQUIsyzomgHTaYBaAhHQJzYppAUtZp1fZQoaAZHQHEJ8PnSv1VoB03DAWgIR0Cc2zLiMo+fdX2UKGgGR0Bxqwm/nGKiaAdNmAFoCEdAnN2afjCHh3V9lChoBkdAYPGHryDqW2gHTegDaAhHQJzlHSa3I+51fZQoaAZHQG2mx9PUKAtoB02CAWgIR0Cc6XfZVXFMdX2UKGgGR0BttfRVp9JCaAdNkgFoCEdAnOyukk8ifXV9lChoBkdAbIsa9bor4GgHTXQBaAhHQJzwzu1F6Rh1fZQoaAZHQG+FCNsFdLRoB02uAWgIR0Cc83M+u/1ydX2UKGgGR0BxGXFwT/Q0aAdNhQFoCEdAnPWyCOFQEnV9lChoBkdAbeoQEIPbwmgHTaUBaAhHQJz5NQHiWE91fZQoaAZHQCNx/gBLf1poB01wAWgIR0Cc+1jB2wFDdX2UKGgGR0BtCxmTTvy9aAdNlAFoCEdAnP2yqZML4XV9lChoBkdAcXC1BdD6WWgHTY4BaAhHQJ0BKD8Lrop1fZQoaAZHQG4FidjG1hNoB031AmgIR0CdBrNzKcNIdX2UKGgGR0BvLtzySV4YaAdNGwJoCEdAnQm9CmdiD3V9lChoBkdAahEWTot+TmgHTaABaAhHQJ0NVkxyn1p1fZQoaAZHQG7TsiSq2jRoB026AWgIR0CdD+hB7eEadX2UKGgGR0BqEfomois5aAdNmgFoCEdAnRJGNm16V3V9lChoBkdAaHUbzbvgFWgHTYoBaAhHQJ0Vq7z06HV1fZQoaAZHQG2vH+ZPVNJoB034AWgIR0CdGRRBeHBUdX2UKGgGR0BtURPqLS/kaAdNdAFoCEdAnR1p+6RQrXV9lChoBkdAcSvHhjvuxGgHTagBaAhHQJ0g2K508vF1fZQoaAZHQGwOAzpHI6toB020AWgIR0CdI7YV6/qPdX2UKGgGR0Bvt38IiTt+aAdNaAFoCEdAnSbptFa0QnV9lChoBkdAYBGyoGY8dWgHTegDaAhHQJ0t1ezD4xl1fZQoaAZHQHF8ADeTFERoB013AWgIR0CdL/r5IpYtdX2UKGgGR0Bqm/uogmqpaAdNiQFoCEdAnTNlh1DBuXV9lChoBkdAbRTv863iJmgHTYEBaAhHQJ01k0CRwId1fZQoaAZHQG/ZBXr+o99oB03fAWgIR0CdOExXXAdodX2UKGgGR0BgwdYEGJN1aAdN6ANoCEdAnT8fxtpEhXV9lChoBkdAbn3VtGd7OWgHTYwBaAhHQJ1CjTjNpud1fZQoaAZHQGjZyuZCv5hoB016AmgIR0CdRjf6XSjQdX2UKGgGR0Bv36zcAR02aAdNaAFoCEdAnUlom9g4O3V9lChoBkdAb4EXbdrO7mgHTYUBaAhHQJ1MPtzCDVZ1fZQoaAZHQG9/aBI4EOloB01uAWgIR0CdTsnjyWiUdX2UKGgGR0Bux3aakRBeaAdNdgFoCEdAnVNx/y5I6XV9lChoBkdAbr+m+Cbtq2gHTc0BaAhHQJ1Wj1YhdMV1fZQoaAZHQGofeenQ6ZJoB02dAWgIR0CdWgwYtQKsdX2UKGgGR0Bq4NbqyGBXaAdNdQFoCEdAnVwoiosI3XV9lChoBkdAbxBowmE5AGgHTXQBaAhHQJ1eQp7TlT51fZQoaAZHQG73kTHsC1ZoB02QAWgIR0CdYcNPP9k0dX2UKGgGR0BxY8JMQEpzaAdNkwFoCEdAnWP7zPKMenV9lChoBkdAcNmdH2AXmGgHTY8BaAhHQJ1nYzLwF1V1fZQoaAZHQG7tY8+zMRpoB013AWgIR0CdaYvRZ2ZBdX2UKGgGR0BwphCVrylOaAdN4AFoCEdAnWxkNnXd03V9lChoBkdAaxiBOHnEEWgHTXsBaAhHQJ1vuEf1Yhd1fZQoaAZHQHCNP+85CF9oB02KAWgIR0CdcfixFAmidX2UKGgGR0BqtYpH7P6baAdNswFoCEdAnXWenyd4FHV9lChoBkdAbx8VjZtelmgHTUwBaAhHQJ13ektVaOh1fZQoaAZHQHGAOTmnwXtoB023AWgIR0Cdee5GSZBtdX2UKGgGR0BtWtDc/MW5aAdNigFoCEdAnX1v6oESunV9lChoBkdAbYS4o7V8TmgHTVcBaAhHQJ1/+PHT7VJ1fZQoaAZHQGzcFPBSDRNoB01rAWgIR0CdgqJNj9XLdX2UKGgGR0BwBJCOWBz4aAdNoQFoCEdAnYe1fZ26kXV9lChoBkdAbqOG47Rv32gHTZIBaAhHQJ2KGNVBD5V1fZQoaAZHQGznQL/jsD5oB01gAWgIR0CdjTPyCnP3dX2UKGgGR0Bt6xePaL4vaAdNjAFoCEdAnY92CI1tO3V9lChoBkdAbRPN+so2GmgHTXcBaAhHQJ2RhxEORT11fZQoaAZHQHD+uHi3ocJoB02LAWgIR0CdlQCBwuM/dX2UKGgGR0BwfyLEUCaJaAdNYgFoCEdAnZcMtoSL63V9lChoBkdAbcsDmr8zh2gHTV8BaAhHQJ2Y+dlNDdB1fZQoaAZHQGxkxNZeRgZoB010AWgIR0CdnEFKkEcLdX2UKGgGR0BunEzbeuV5aAdNkwFoCEdAnZ6IaDPGAHV9lChoBkdAb6IX0Gu9vmgHTa0BaAhHQJ2iFlWfbsZ1fZQoaAZHQHA4alYU34toB01wAWgIR0CdpCjWkJrtdX2UKGgGR0BvVD5j6N2laAdN8AFoCEdAnacBRQ79ynV9lChoBkdAb35AMUh3aGgHTXMBaAhHQJ2qObPQfIV1fZQoaAZHQG4QSQPqcExoB014AWgIR0CdrGQBPsRhdX2UKGgGR0Bsv1R77bcoaAdNegFoCEdAna+uIuXeFnV9lChoBkdAbKCgIyCWeGgHTdUBaAhHQJ2zNhBqsU91fZQoaAZHQGqFd8JD3M9oB02kAWgIR0CdtkbdJrckdX2UKGgGR0BwljQhOgxraAdNowFoCEdAnbtDR6Ww/3V9lChoBkdAb8LcophF3WgHTWMBaAhHQJ29RK7I1cd1fZQoaAZHQGwCXfqHGjtoB01vAWgIR0Cdv2RNATqTdX2UKGgGR0ATP48EFGG3aAdNXAFoCEdAncJ+qebut3V9lChoBkdAcbvgK4QSSWgHTYEBaAhHQJ3EqUHIIWx1fZQoaAZHQHBq/rSmZVpoB03gAWgIR0CdyIfGdZq3dX2UKGgGR0BwiqxgRbr1aAdN0AFoCEdAncsii7Ciy3V9lChoBkdAbRiLBKtga2gHTVcBaAhHQJ3NEdzXBgx1fZQoaAZHQG+yejVQQ+VoB01cAWgIR0Cd0DjMmnfmdX2UKGgGR0Bv8D0th/iHaAdNXAFoCEdAndIyApazNXV9lChoBkdAa/MZhrnDBWgHTboBaAhHQJ3V6JEYwZh1fZQoaAZHQG6P2zv7WNFoB01EAWgIR0Cd17TbnHNpdX2UKGgGR0Bv7M+RoysTaAdNOgFoCEdAndmFTWGyonV9lChoBkdAcI4I2OyVwGgHTakBaAhHQJ3dGzOX3QF1fZQoaAZHQHCaeanaWX1oB017AWgIR0Cd30BzmwJPdX2UKGgGR0BxtD2oNutPaAdNVwFoCEdAneFQpWmxdXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3908, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3372648f536f025d15a5d7357d268e3e6160f14f6a07ce957ed79bc0c73fe197
3
+ size 147430
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7b936df9a4d0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b936df9a560>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b936df9a5f0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b936df9a680>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7b936df9a710>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7b936df9a7a0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b936df9a830>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b936df9a8c0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7b936df9a950>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b936df9a9e0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b936df9aa70>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b936df9ab00>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7b936e138800>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1000448,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1721803852450907875,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAEC8YT5mSuM+LF8Qvs+mXb5kW2I8GpDYOwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.00044800000000000395,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGuuy3Td+G6MAWyUTdIBjAF0lEdAnK0ZIMBp6HV9lChoBkdAbzQWtU4rBmgHTcMBaAhHQJyv9qWTouB1fZQoaAZHQHBQV41P3ztoB02tAWgIR0CctJ3t8eCDdX2UKGgGR0BvRF/OMVDbaAdNigFoCEdAnLe9+ocaO3V9lChoBkdAb2f+3H7xeGgHTXYBaAhHQJy8DJA+pwV1fZQoaAZHQG71xagVXV9oB017AWgIR0Ccvis+3YthdX2UKGgGR0Bwe646Oo5xaAdNYAFoCEdAnMAsFt8/lnV9lChoBkdAbMZOD8LromgHTYsBaAhHQJzDjdYW+Gp1fZQoaAZHQG/GQJw84gloB025AWgIR0Ccxhqx1PnCdX2UKGgGR0Bwfxkd3jdYaAdNjgFoCEdAnMhgKa5PM3V9lChoBkdAb3iM2m51/2gHTW8BaAhHQJzLr5aePJd1fZQoaAZHQGyhT3qRlpZoB01pAWgIR0Cczd47ihnKdX2UKGgGR0Bi558WsRxtaAdN6ANoCEdAnNTlaGHpKXV9lChoBkdAcNQUIsyzomgHTaYBaAhHQJzYppAUtZp1fZQoaAZHQHEJ8PnSv1VoB03DAWgIR0Cc2zLiMo+fdX2UKGgGR0Bxqwm/nGKiaAdNmAFoCEdAnN2afjCHh3V9lChoBkdAYPGHryDqW2gHTegDaAhHQJzlHSa3I+51fZQoaAZHQG2mx9PUKAtoB02CAWgIR0Cc6XfZVXFMdX2UKGgGR0BttfRVp9JCaAdNkgFoCEdAnOyukk8ifXV9lChoBkdAbIsa9bor4GgHTXQBaAhHQJzwzu1F6Rh1fZQoaAZHQG+FCNsFdLRoB02uAWgIR0Cc83M+u/1ydX2UKGgGR0BxGXFwT/Q0aAdNhQFoCEdAnPWyCOFQEnV9lChoBkdAbeoQEIPbwmgHTaUBaAhHQJz5NQHiWE91fZQoaAZHQCNx/gBLf1poB01wAWgIR0Cc+1jB2wFDdX2UKGgGR0BtCxmTTvy9aAdNlAFoCEdAnP2yqZML4XV9lChoBkdAcXC1BdD6WWgHTY4BaAhHQJ0BKD8Lrop1fZQoaAZHQG4FidjG1hNoB031AmgIR0CdBrNzKcNIdX2UKGgGR0BvLtzySV4YaAdNGwJoCEdAnQm9CmdiD3V9lChoBkdAahEWTot+TmgHTaABaAhHQJ0NVkxyn1p1fZQoaAZHQG7TsiSq2jRoB026AWgIR0CdD+hB7eEadX2UKGgGR0BqEfomois5aAdNmgFoCEdAnRJGNm16V3V9lChoBkdAaHUbzbvgFWgHTYoBaAhHQJ0Vq7z06HV1fZQoaAZHQG2vH+ZPVNJoB034AWgIR0CdGRRBeHBUdX2UKGgGR0BtURPqLS/kaAdNdAFoCEdAnR1p+6RQrXV9lChoBkdAcSvHhjvuxGgHTagBaAhHQJ0g2K508vF1fZQoaAZHQGwOAzpHI6toB020AWgIR0CdI7YV6/qPdX2UKGgGR0Bvt38IiTt+aAdNaAFoCEdAnSbptFa0QnV9lChoBkdAYBGyoGY8dWgHTegDaAhHQJ0t1ezD4xl1fZQoaAZHQHF8ADeTFERoB013AWgIR0CdL/r5IpYtdX2UKGgGR0Bqm/uogmqpaAdNiQFoCEdAnTNlh1DBuXV9lChoBkdAbRTv863iJmgHTYEBaAhHQJ01k0CRwId1fZQoaAZHQG/ZBXr+o99oB03fAWgIR0CdOExXXAdodX2UKGgGR0BgwdYEGJN1aAdN6ANoCEdAnT8fxtpEhXV9lChoBkdAbn3VtGd7OWgHTYwBaAhHQJ1CjTjNpud1fZQoaAZHQGjZyuZCv5hoB016AmgIR0CdRjf6XSjQdX2UKGgGR0Bv36zcAR02aAdNaAFoCEdAnUlom9g4O3V9lChoBkdAb4EXbdrO7mgHTYUBaAhHQJ1MPtzCDVZ1fZQoaAZHQG9/aBI4EOloB01uAWgIR0CdTsnjyWiUdX2UKGgGR0Bux3aakRBeaAdNdgFoCEdAnVNx/y5I6XV9lChoBkdAbr+m+Cbtq2gHTc0BaAhHQJ1Wj1YhdMV1fZQoaAZHQGofeenQ6ZJoB02dAWgIR0CdWgwYtQKsdX2UKGgGR0Bq4NbqyGBXaAdNdQFoCEdAnVwoiosI3XV9lChoBkdAbxBowmE5AGgHTXQBaAhHQJ1eQp7TlT51fZQoaAZHQG73kTHsC1ZoB02QAWgIR0CdYcNPP9k0dX2UKGgGR0BxY8JMQEpzaAdNkwFoCEdAnWP7zPKMenV9lChoBkdAcNmdH2AXmGgHTY8BaAhHQJ1nYzLwF1V1fZQoaAZHQG7tY8+zMRpoB013AWgIR0CdaYvRZ2ZBdX2UKGgGR0BwphCVrylOaAdN4AFoCEdAnWxkNnXd03V9lChoBkdAaxiBOHnEEWgHTXsBaAhHQJ1vuEf1Yhd1fZQoaAZHQHCNP+85CF9oB02KAWgIR0CdcfixFAmidX2UKGgGR0BqtYpH7P6baAdNswFoCEdAnXWenyd4FHV9lChoBkdAbx8VjZtelmgHTUwBaAhHQJ13ektVaOh1fZQoaAZHQHGAOTmnwXtoB023AWgIR0Cdee5GSZBtdX2UKGgGR0BtWtDc/MW5aAdNigFoCEdAnX1v6oESunV9lChoBkdAbYS4o7V8TmgHTVcBaAhHQJ1/+PHT7VJ1fZQoaAZHQGzcFPBSDRNoB01rAWgIR0CdgqJNj9XLdX2UKGgGR0BwBJCOWBz4aAdNoQFoCEdAnYe1fZ26kXV9lChoBkdAbqOG47Rv32gHTZIBaAhHQJ2KGNVBD5V1fZQoaAZHQGznQL/jsD5oB01gAWgIR0CdjTPyCnP3dX2UKGgGR0Bt6xePaL4vaAdNjAFoCEdAnY92CI1tO3V9lChoBkdAbRPN+so2GmgHTXcBaAhHQJ2RhxEORT11fZQoaAZHQHD+uHi3ocJoB02LAWgIR0CdlQCBwuM/dX2UKGgGR0BwfyLEUCaJaAdNYgFoCEdAnZcMtoSL63V9lChoBkdAbcsDmr8zh2gHTV8BaAhHQJ2Y+dlNDdB1fZQoaAZHQGxkxNZeRgZoB010AWgIR0CdnEFKkEcLdX2UKGgGR0BunEzbeuV5aAdNkwFoCEdAnZ6IaDPGAHV9lChoBkdAb6IX0Gu9vmgHTa0BaAhHQJ2iFlWfbsZ1fZQoaAZHQHA4alYU34toB01wAWgIR0CdpCjWkJrtdX2UKGgGR0BvVD5j6N2laAdN8AFoCEdAnacBRQ79ynV9lChoBkdAb35AMUh3aGgHTXMBaAhHQJ2qObPQfIV1fZQoaAZHQG4QSQPqcExoB014AWgIR0CdrGQBPsRhdX2UKGgGR0Bsv1R77bcoaAdNegFoCEdAna+uIuXeFnV9lChoBkdAbKCgIyCWeGgHTdUBaAhHQJ2zNhBqsU91fZQoaAZHQGqFd8JD3M9oB02kAWgIR0CdtkbdJrckdX2UKGgGR0BwljQhOgxraAdNowFoCEdAnbtDR6Ww/3V9lChoBkdAb8LcophF3WgHTWMBaAhHQJ29RK7I1cd1fZQoaAZHQGwCXfqHGjtoB01vAWgIR0Cdv2RNATqTdX2UKGgGR0ATP48EFGG3aAdNXAFoCEdAncJ+qebut3V9lChoBkdAcbvgK4QSSWgHTYEBaAhHQJ3EqUHIIWx1fZQoaAZHQHBq/rSmZVpoB03gAWgIR0CdyIfGdZq3dX2UKGgGR0BwiqxgRbr1aAdN0AFoCEdAncsii7Ciy3V9lChoBkdAbRiLBKtga2gHTVcBaAhHQJ3NEdzXBgx1fZQoaAZHQG+yejVQQ+VoB01cAWgIR0Cd0DjMmnfmdX2UKGgGR0Bv8D0th/iHaAdNXAFoCEdAndIyApazNXV9lChoBkdAa/MZhrnDBWgHTboBaAhHQJ3V6JEYwZh1fZQoaAZHQG6P2zv7WNFoB01EAWgIR0Cd17TbnHNpdX2UKGgGR0Bv7M+RoysTaAdNOgFoCEdAndmFTWGyonV9lChoBkdAcI4I2OyVwGgHTakBaAhHQJ3dGzOX3QF1fZQoaAZHQHCaeanaWX1oB017AWgIR0Cd30BzmwJPdX2UKGgGR0BxtD2oNutPaAdNVwFoCEdAneFQpWmxdXVlLg=="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 3908,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 1,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c8bb6312d69b59fdeeb0f1154486e3d8d93eb434195ca273550018637119aa12
3
+ size 88362
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7356ed912fa5c8b26b640f675b0dc030dfc4d0268eb0b27ea1cbbba18557b1e0
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.3.1+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.25.2
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (174 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 241.34102319999997, "std_reward": 20.590022498324572, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-07-24T07:35:24.673584"}