imvladikon
commited on
Upload model
Browse files- .gitattributes +1 -0
- README.md +131 -0
- config.json +289 -0
- model.safetensors +3 -0
- special_tokens_map.json +15 -0
- tokenizer.json +3 -0
- tokenizer_config.json +71 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: span-marker
|
3 |
+
tags:
|
4 |
+
- span-marker
|
5 |
+
- token-classification
|
6 |
+
- ner
|
7 |
+
- named-entity-recognition
|
8 |
+
- generated_from_span_marker_trainer
|
9 |
+
metrics:
|
10 |
+
- precision
|
11 |
+
- recall
|
12 |
+
- f1
|
13 |
+
widget: []
|
14 |
+
pipeline_tag: token-classification
|
15 |
+
---
|
16 |
+
|
17 |
+
# SpanMarker
|
18 |
+
|
19 |
+
This is a [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) model that can be used for Named Entity Recognition.
|
20 |
+
|
21 |
+
## Model Details
|
22 |
+
|
23 |
+
### Model Description
|
24 |
+
- **Model Type:** SpanMarker
|
25 |
+
<!-- - **Encoder:** [Unknown](https://huggingface.co/unknown) -->
|
26 |
+
- **Maximum Sequence Length:** 512 tokens
|
27 |
+
- **Maximum Entity Length:** 150 words
|
28 |
+
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
29 |
+
<!-- - **Language:** Unknown -->
|
30 |
+
<!-- - **License:** Unknown -->
|
31 |
+
|
32 |
+
### Model Sources
|
33 |
+
|
34 |
+
- **Repository:** [SpanMarker on GitHub](https://github.com/tomaarsen/SpanMarkerNER)
|
35 |
+
- **Thesis:** [SpanMarker For Named Entity Recognition](https://raw.githubusercontent.com/tomaarsen/SpanMarkerNER/main/thesis.pdf)
|
36 |
+
|
37 |
+
## Uses
|
38 |
+
|
39 |
+
### Direct Use for Inference
|
40 |
+
|
41 |
+
```python
|
42 |
+
from span_marker import SpanMarkerModel
|
43 |
+
|
44 |
+
# Download from the 🤗 Hub
|
45 |
+
model = SpanMarkerModel.from_pretrained("span_marker_model_id")
|
46 |
+
# Run inference
|
47 |
+
entities = model.predict("None")
|
48 |
+
```
|
49 |
+
|
50 |
+
### Downstream Use
|
51 |
+
You can finetune this model on your own dataset.
|
52 |
+
|
53 |
+
<details><summary>Click to expand</summary>
|
54 |
+
|
55 |
+
```python
|
56 |
+
from span_marker import SpanMarkerModel, Trainer
|
57 |
+
|
58 |
+
# Download from the 🤗 Hub
|
59 |
+
model = SpanMarkerModel.from_pretrained("span_marker_model_id")
|
60 |
+
|
61 |
+
# Specify a Dataset with "tokens" and "ner_tag" columns
|
62 |
+
dataset = load_dataset("conll2003") # For example CoNLL2003
|
63 |
+
|
64 |
+
# Initialize a Trainer using the pretrained model & dataset
|
65 |
+
trainer = Trainer(
|
66 |
+
model=model,
|
67 |
+
train_dataset=dataset["train"],
|
68 |
+
eval_dataset=dataset["validation"],
|
69 |
+
)
|
70 |
+
trainer.train()
|
71 |
+
trainer.save_model("span_marker_model_id-finetuned")
|
72 |
+
```
|
73 |
+
</details>
|
74 |
+
|
75 |
+
<!--
|
76 |
+
### Out-of-Scope Use
|
77 |
+
|
78 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
79 |
+
-->
|
80 |
+
|
81 |
+
<!--
|
82 |
+
## Bias, Risks and Limitations
|
83 |
+
|
84 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
85 |
+
-->
|
86 |
+
|
87 |
+
<!--
|
88 |
+
### Recommendations
|
89 |
+
|
90 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
91 |
+
-->
|
92 |
+
|
93 |
+
## Training Details
|
94 |
+
|
95 |
+
### Framework Versions
|
96 |
+
- Python: 3.10.12
|
97 |
+
- SpanMarker: 1.5.0
|
98 |
+
- Transformers: 4.35.2
|
99 |
+
- PyTorch: 2.1.0+cu121
|
100 |
+
- Datasets: 2.16.1
|
101 |
+
- Tokenizers: 0.15.1
|
102 |
+
|
103 |
+
## Citation
|
104 |
+
|
105 |
+
### BibTeX
|
106 |
+
```
|
107 |
+
@software{Aarsen_SpanMarker,
|
108 |
+
author = {Aarsen, Tom},
|
109 |
+
license = {Apache-2.0},
|
110 |
+
title = {{SpanMarker for Named Entity Recognition}},
|
111 |
+
url = {https://github.com/tomaarsen/SpanMarkerNER}
|
112 |
+
}
|
113 |
+
```
|
114 |
+
|
115 |
+
<!--
|
116 |
+
## Glossary
|
117 |
+
|
118 |
+
*Clearly define terms in order to be accessible across audiences.*
|
119 |
+
-->
|
120 |
+
|
121 |
+
<!--
|
122 |
+
## Model Card Authors
|
123 |
+
|
124 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
125 |
+
-->
|
126 |
+
|
127 |
+
<!--
|
128 |
+
## Model Card Contact
|
129 |
+
|
130 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
131 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,289 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/content/xlm-roberta-base-ar-mafat-ner",
|
3 |
+
"architectures": [
|
4 |
+
"SpanMarkerModel"
|
5 |
+
],
|
6 |
+
"encoder": {
|
7 |
+
"_name_or_path": "xlm-roberta-base",
|
8 |
+
"add_cross_attention": false,
|
9 |
+
"architectures": [
|
10 |
+
"XLMRobertaForMaskedLM"
|
11 |
+
],
|
12 |
+
"attention_probs_dropout_prob": 0.1,
|
13 |
+
"bad_words_ids": null,
|
14 |
+
"begin_suppress_tokens": null,
|
15 |
+
"bos_token_id": 0,
|
16 |
+
"chunk_size_feed_forward": 0,
|
17 |
+
"classifier_dropout": null,
|
18 |
+
"cross_attention_hidden_size": null,
|
19 |
+
"decoder_start_token_id": null,
|
20 |
+
"diversity_penalty": 0.0,
|
21 |
+
"do_sample": false,
|
22 |
+
"early_stopping": false,
|
23 |
+
"encoder_no_repeat_ngram_size": 0,
|
24 |
+
"eos_token_id": 2,
|
25 |
+
"exponential_decay_length_penalty": null,
|
26 |
+
"finetuning_task": null,
|
27 |
+
"forced_bos_token_id": null,
|
28 |
+
"forced_eos_token_id": null,
|
29 |
+
"hidden_act": "gelu",
|
30 |
+
"hidden_dropout_prob": 0.1,
|
31 |
+
"hidden_size": 768,
|
32 |
+
"id2label": {
|
33 |
+
"0": "U-ANG",
|
34 |
+
"1": "L-ANG",
|
35 |
+
"2": "B-ANG",
|
36 |
+
"3": "I-ANG",
|
37 |
+
"4": "U-DUC",
|
38 |
+
"5": "I-DUC",
|
39 |
+
"6": "L-DUC",
|
40 |
+
"7": "B-DUC",
|
41 |
+
"8": "I-EVE",
|
42 |
+
"9": "L-EVE",
|
43 |
+
"10": "B-EVE",
|
44 |
+
"11": "U-EVE",
|
45 |
+
"12": "L-FAC",
|
46 |
+
"13": "U-FAC",
|
47 |
+
"14": "I-FAC",
|
48 |
+
"15": "B-FAC",
|
49 |
+
"16": "L-GPE",
|
50 |
+
"17": "B-GPE",
|
51 |
+
"18": "I-GPE",
|
52 |
+
"19": "U-GPE",
|
53 |
+
"20": "U-INFORMAL",
|
54 |
+
"21": "I-INFORMAL",
|
55 |
+
"22": "L-INFORMAL",
|
56 |
+
"23": "B-INFORMAL",
|
57 |
+
"24": "U-LOC",
|
58 |
+
"25": "I-LOC",
|
59 |
+
"26": "L-LOC",
|
60 |
+
"27": "B-LOC",
|
61 |
+
"28": "I-MISC",
|
62 |
+
"29": "U-MISC",
|
63 |
+
"30": "B-MISC",
|
64 |
+
"31": "L-MISC",
|
65 |
+
"32": "O",
|
66 |
+
"33": "I-ORG",
|
67 |
+
"34": "L-ORG",
|
68 |
+
"35": "U-ORG",
|
69 |
+
"36": "B-ORG",
|
70 |
+
"37": "L-PER",
|
71 |
+
"38": "B-PER",
|
72 |
+
"39": "I-PER",
|
73 |
+
"40": "U-PER",
|
74 |
+
"41": "I-TIMEX",
|
75 |
+
"42": "L-TIMEX",
|
76 |
+
"43": "U-TIMEX",
|
77 |
+
"44": "B-TIMEX",
|
78 |
+
"45": "U-TTL",
|
79 |
+
"46": "L-TTL",
|
80 |
+
"47": "B-TTL",
|
81 |
+
"48": "I-TTL",
|
82 |
+
"49": "B-WOA",
|
83 |
+
"50": "L-WOA",
|
84 |
+
"51": "U-WOA",
|
85 |
+
"52": "I-WOA"
|
86 |
+
},
|
87 |
+
"initializer_range": 0.02,
|
88 |
+
"intermediate_size": 3072,
|
89 |
+
"is_decoder": false,
|
90 |
+
"is_encoder_decoder": false,
|
91 |
+
"label2id": {
|
92 |
+
"B-ANG": 2,
|
93 |
+
"B-DUC": 7,
|
94 |
+
"B-EVE": 10,
|
95 |
+
"B-FAC": 15,
|
96 |
+
"B-GPE": 17,
|
97 |
+
"B-INFORMAL": 23,
|
98 |
+
"B-LOC": 27,
|
99 |
+
"B-MISC": 30,
|
100 |
+
"B-ORG": 36,
|
101 |
+
"B-PER": 38,
|
102 |
+
"B-TIMEX": 44,
|
103 |
+
"B-TTL": 47,
|
104 |
+
"B-WOA": 49,
|
105 |
+
"I-ANG": 3,
|
106 |
+
"I-DUC": 5,
|
107 |
+
"I-EVE": 8,
|
108 |
+
"I-FAC": 14,
|
109 |
+
"I-GPE": 18,
|
110 |
+
"I-INFORMAL": 21,
|
111 |
+
"I-LOC": 25,
|
112 |
+
"I-MISC": 28,
|
113 |
+
"I-ORG": 33,
|
114 |
+
"I-PER": 39,
|
115 |
+
"I-TIMEX": 41,
|
116 |
+
"I-TTL": 48,
|
117 |
+
"I-WOA": 52,
|
118 |
+
"L-ANG": 1,
|
119 |
+
"L-DUC": 6,
|
120 |
+
"L-EVE": 9,
|
121 |
+
"L-FAC": 12,
|
122 |
+
"L-GPE": 16,
|
123 |
+
"L-INFORMAL": 22,
|
124 |
+
"L-LOC": 26,
|
125 |
+
"L-MISC": 31,
|
126 |
+
"L-ORG": 34,
|
127 |
+
"L-PER": 37,
|
128 |
+
"L-TIMEX": 42,
|
129 |
+
"L-TTL": 46,
|
130 |
+
"L-WOA": 50,
|
131 |
+
"O": 32,
|
132 |
+
"U-ANG": 0,
|
133 |
+
"U-DUC": 4,
|
134 |
+
"U-EVE": 11,
|
135 |
+
"U-FAC": 13,
|
136 |
+
"U-GPE": 19,
|
137 |
+
"U-INFORMAL": 20,
|
138 |
+
"U-LOC": 24,
|
139 |
+
"U-MISC": 29,
|
140 |
+
"U-ORG": 35,
|
141 |
+
"U-PER": 40,
|
142 |
+
"U-TIMEX": 43,
|
143 |
+
"U-TTL": 45,
|
144 |
+
"U-WOA": 51
|
145 |
+
},
|
146 |
+
"layer_norm_eps": 1e-05,
|
147 |
+
"length_penalty": 1.0,
|
148 |
+
"max_length": 20,
|
149 |
+
"max_position_embeddings": 514,
|
150 |
+
"min_length": 0,
|
151 |
+
"model_type": "xlm-roberta",
|
152 |
+
"no_repeat_ngram_size": 0,
|
153 |
+
"num_attention_heads": 12,
|
154 |
+
"num_beam_groups": 1,
|
155 |
+
"num_beams": 1,
|
156 |
+
"num_hidden_layers": 12,
|
157 |
+
"num_return_sequences": 1,
|
158 |
+
"output_attentions": false,
|
159 |
+
"output_hidden_states": false,
|
160 |
+
"output_past": true,
|
161 |
+
"output_scores": false,
|
162 |
+
"pad_token_id": 1,
|
163 |
+
"position_embedding_type": "absolute",
|
164 |
+
"prefix": null,
|
165 |
+
"problem_type": null,
|
166 |
+
"pruned_heads": {},
|
167 |
+
"remove_invalid_values": false,
|
168 |
+
"repetition_penalty": 1.0,
|
169 |
+
"return_dict": true,
|
170 |
+
"return_dict_in_generate": false,
|
171 |
+
"sep_token_id": null,
|
172 |
+
"suppress_tokens": null,
|
173 |
+
"task_specific_params": null,
|
174 |
+
"temperature": 1.0,
|
175 |
+
"tf_legacy_loss": false,
|
176 |
+
"tie_encoder_decoder": false,
|
177 |
+
"tie_word_embeddings": true,
|
178 |
+
"tokenizer_class": null,
|
179 |
+
"top_k": 50,
|
180 |
+
"top_p": 1.0,
|
181 |
+
"torch_dtype": null,
|
182 |
+
"torchscript": false,
|
183 |
+
"transformers_version": "4.36.2",
|
184 |
+
"type_vocab_size": 1,
|
185 |
+
"typical_p": 1.0,
|
186 |
+
"use_bfloat16": false,
|
187 |
+
"use_cache": true,
|
188 |
+
"vocab_size": 250008
|
189 |
+
},
|
190 |
+
"entity_max_length": 150,
|
191 |
+
"id2label": {
|
192 |
+
"0": "O",
|
193 |
+
"1": "ANG",
|
194 |
+
"2": "DUC",
|
195 |
+
"3": "EVE",
|
196 |
+
"4": "FAC",
|
197 |
+
"5": "GPE",
|
198 |
+
"6": "INFORMAL",
|
199 |
+
"7": "LOC",
|
200 |
+
"8": "MISC",
|
201 |
+
"9": "ORG",
|
202 |
+
"10": "PER",
|
203 |
+
"11": "TIMEX",
|
204 |
+
"12": "TTL",
|
205 |
+
"13": "WOA"
|
206 |
+
},
|
207 |
+
"id2reduced_id": {
|
208 |
+
"0": 1,
|
209 |
+
"1": 1,
|
210 |
+
"2": 1,
|
211 |
+
"3": 1,
|
212 |
+
"4": 2,
|
213 |
+
"5": 2,
|
214 |
+
"6": 2,
|
215 |
+
"7": 2,
|
216 |
+
"8": 3,
|
217 |
+
"9": 3,
|
218 |
+
"10": 3,
|
219 |
+
"11": 3,
|
220 |
+
"12": 4,
|
221 |
+
"13": 4,
|
222 |
+
"14": 4,
|
223 |
+
"15": 4,
|
224 |
+
"16": 5,
|
225 |
+
"17": 5,
|
226 |
+
"18": 5,
|
227 |
+
"19": 5,
|
228 |
+
"20": 6,
|
229 |
+
"21": 6,
|
230 |
+
"22": 6,
|
231 |
+
"23": 6,
|
232 |
+
"24": 7,
|
233 |
+
"25": 7,
|
234 |
+
"26": 7,
|
235 |
+
"27": 7,
|
236 |
+
"28": 8,
|
237 |
+
"29": 8,
|
238 |
+
"30": 8,
|
239 |
+
"31": 8,
|
240 |
+
"32": 0,
|
241 |
+
"33": 9,
|
242 |
+
"34": 9,
|
243 |
+
"35": 9,
|
244 |
+
"36": 9,
|
245 |
+
"37": 10,
|
246 |
+
"38": 10,
|
247 |
+
"39": 10,
|
248 |
+
"40": 10,
|
249 |
+
"41": 11,
|
250 |
+
"42": 11,
|
251 |
+
"43": 11,
|
252 |
+
"44": 11,
|
253 |
+
"45": 12,
|
254 |
+
"46": 12,
|
255 |
+
"47": 12,
|
256 |
+
"48": 12,
|
257 |
+
"49": 13,
|
258 |
+
"50": 13,
|
259 |
+
"51": 13,
|
260 |
+
"52": 13
|
261 |
+
},
|
262 |
+
"label2id": {
|
263 |
+
"ANG": 1,
|
264 |
+
"DUC": 2,
|
265 |
+
"EVE": 3,
|
266 |
+
"FAC": 4,
|
267 |
+
"GPE": 5,
|
268 |
+
"INFORMAL": 6,
|
269 |
+
"LOC": 7,
|
270 |
+
"MISC": 8,
|
271 |
+
"O": 0,
|
272 |
+
"ORG": 9,
|
273 |
+
"PER": 10,
|
274 |
+
"TIMEX": 11,
|
275 |
+
"TTL": 12,
|
276 |
+
"WOA": 13
|
277 |
+
},
|
278 |
+
"marker_max_length": 128,
|
279 |
+
"max_next_context": null,
|
280 |
+
"max_prev_context": null,
|
281 |
+
"model_max_length": null,
|
282 |
+
"model_max_length_default": 512,
|
283 |
+
"model_type": "span-marker",
|
284 |
+
"span_marker_version": "1.5.0",
|
285 |
+
"torch_dtype": "float32",
|
286 |
+
"trained_with_document_context": false,
|
287 |
+
"transformers_version": "4.35.2",
|
288 |
+
"vocab_size": 250008
|
289 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9268b25b46635a447205bcab9c84c40d47b4695d96e91c801b32b427cd881f41
|
3 |
+
size 1112303344
|
special_tokens_map.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<s>",
|
3 |
+
"cls_token": "<s>",
|
4 |
+
"eos_token": "</s>",
|
5 |
+
"mask_token": {
|
6 |
+
"content": "<mask>",
|
7 |
+
"lstrip": true,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false
|
11 |
+
},
|
12 |
+
"pad_token": "<pad>",
|
13 |
+
"sep_token": "</s>",
|
14 |
+
"unk_token": "<unk>"
|
15 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4744345123bc9dbf0daa1471ddf0d6b25a367b938235dcdbab1114b274a07887
|
3 |
+
size 17083318
|
tokenizer_config.json
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": true,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"0": {
|
5 |
+
"content": "<s>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": false,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"1": {
|
13 |
+
"content": "<pad>",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": false,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": true
|
19 |
+
},
|
20 |
+
"2": {
|
21 |
+
"content": "</s>",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": false,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false,
|
26 |
+
"special": true
|
27 |
+
},
|
28 |
+
"3": {
|
29 |
+
"content": "<unk>",
|
30 |
+
"lstrip": false,
|
31 |
+
"normalized": false,
|
32 |
+
"rstrip": false,
|
33 |
+
"single_word": false,
|
34 |
+
"special": true
|
35 |
+
},
|
36 |
+
"250001": {
|
37 |
+
"content": "<mask>",
|
38 |
+
"lstrip": true,
|
39 |
+
"normalized": false,
|
40 |
+
"rstrip": false,
|
41 |
+
"single_word": false,
|
42 |
+
"special": true
|
43 |
+
},
|
44 |
+
"250002": {
|
45 |
+
"content": "<start>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false,
|
50 |
+
"special": true
|
51 |
+
},
|
52 |
+
"250003": {
|
53 |
+
"content": "<end>",
|
54 |
+
"lstrip": false,
|
55 |
+
"normalized": false,
|
56 |
+
"rstrip": false,
|
57 |
+
"single_word": false,
|
58 |
+
"special": true
|
59 |
+
}
|
60 |
+
},
|
61 |
+
"bos_token": "<s>",
|
62 |
+
"clean_up_tokenization_spaces": true,
|
63 |
+
"cls_token": "<s>",
|
64 |
+
"eos_token": "</s>",
|
65 |
+
"mask_token": "<mask>",
|
66 |
+
"model_max_length": 512,
|
67 |
+
"pad_token": "<pad>",
|
68 |
+
"sep_token": "</s>",
|
69 |
+
"tokenizer_class": "XLMRobertaTokenizer",
|
70 |
+
"unk_token": "<unk>"
|
71 |
+
}
|