lunarlanding-ppo / config.json
iamandrewliao's picture
upload model following Colab demo
3ac061c
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ab470b64f70>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ab470b65000>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ab470b65090>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ab470b65120>", "_build": "<function ActorCriticPolicy._build at 0x7ab470b651b0>", "forward": "<function ActorCriticPolicy.forward at 0x7ab470b65240>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ab470b652d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ab470b65360>", "_predict": "<function ActorCriticPolicy._predict at 0x7ab470b653f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ab470b65480>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ab470b65510>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ab470b655a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ab470afa640>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1703299333852733130, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMDcEj7jMA8/6PywvcUVVb5Nef48FWj8OwAAAAAAAAAAxqg6vrsVgbzKjMc63qkHOVfi5z2I9Pq5AACAPwAAgD8ArJA9j3QpvHZ23r1LQbC9LDCQPVAQkz4AAIA/AACAP7qZFj/vLgm+dY9KPYkUmbv5N9O96XOyvAAAgD8AAIA/gLlbvqybNz/+eTc+LGTHvpMrlb0FjMU9AAAAAAAAAAAAALm69vQyukCoQLnvQFi0CMjSulA3XDgAAIA/AACAPwBkujykwX48hK0RvsliDr4Ss7s7W8XBvQAAAAAAAAAAmqo8Pb8UqT+ZVhE/j4YMv2T6zrquVqk9AAAAAAAAAACAfO891Fu2PuyjHT3df4K+jaCgPQpyvz0AAAAAAAAAANonnr2lG0g/KnA3PeUeub7v3E29BlxVPAAAAAAAAAAA2kURPinvBrz70MQ9k0JKvEWcib0yAym9AACAPwAAgD8a6yY96SunPhqiy70TKX2+k8I4vY1A/7sAAAAAAAAAAM2I8rxcO1K6ew0vuTPORDNeyMm5GP5LOAAAgD8AAIA/GrNwPbUDnD+6J3w+6XjgvuB3gT0L/UY8AAAAAAAAAADNvde89ixzug0wmjrCcxc2hPh2utnSs7kAAIA/AACAP82c67uQfbs/gq/+vNYCL75I2be8ETe4vAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVNwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHAUXXI2fkGMAWyUTQ0BjAF0lEdAoXcaUVzp5nV9lChoBkdAcRWg/TspomgHS+toCEdAoXdt56dDpnV9lChoBkdAcZWi9Zid8WgHTSoBaAhHQKF3ctK7I1d1fZQoaAZHQG/T3fqHGjtoB01GAWgIR0Chd47nX/YKdX2UKGgGR0BwXf6pHZsbaAdNSQFoCEdAoYCSgoPTX3V9lChoBkdAbiyZhrnDBWgHTSQBaAhHQKGAkvRJEpl1fZQoaAZHQHC3EONHYpVoB00OAWgIR0ChgQ63y7PIdX2UKGgGR0BtEo0l7dBTaAdNFwFoCEdAoYFu/8EV33V9lChoBkdAcRSZQYUFjmgHTRMBaAhHQKGB2E+Pikx1fZQoaAZHQHDj+jM3ZPFoB0v6aAhHQKGC+EGJN0x1fZQoaAZHQEjyq7ROUMZoB0u5aAhHQKGDTWsijcp1fZQoaAZHQHM7tI5HVgBoB01ZAWgIR0Chg02XC0ngdX2UKGgGR0BxsXTgEU0vaAdNLgFoCEdAoYN0dq+JxnV9lChoBkdAccWY64lQdmgHTSMBaAhHQKGD33wkPc11fZQoaAZHQHHT2j0th/loB00fAWgIR0ChhBuv2Xb/dX2UKGgGR0BAIW4Vh1DCaAdL/mgIR0ChhGuerdWRdX2UKGgGR0ByJQBV+7UYaAdNdgFoCEdAoYTOUGFBY3V9lChoBkdAbxA7Dl5nlGgHS/hoCEdAoYTSrYGt63V9lChoBkdAbt5U7Sy+pWgHTRsBaAhHQKGFU9rXUYt1fZQoaAZHQHCJPcBU70ZoB00WAWgIR0Chhljopx3ndX2UKGgGR0BwB8SoOx0NaAdNCQFoCEdAoYcUrEtNBXV9lChoBkdAca8ZB9kSVWgHTScBaAhHQKGHSjqv/zd1fZQoaAZHQHAfRSLqD9RoB00gAWgIR0Chh8g/1QIldX2UKGgGR0Bwc2yQgcLjaAdL7mgIR0ChiBD63y7PdX2UKGgGR0BuSxuuRs/IaAdNKQFoCEdAoYlTAFgUlHV9lChoBkdAcPIdQwblzWgHTR4BaAhHQKGJdoysS011fZQoaAZHQHIpjtb9qDdoB0vzaAhHQKGJgSL61st1fZQoaAZHQHNoLRjSXt1oB029AWgIR0ChiYW+GoJidX2UKGgGR0BjT3yCnP3SaAdN6ANoCEdAoYmKs4ku6HV9lChoBkdAbpv5AQg9vGgHTTEBaAhHQKGJ+fV7QcB1fZQoaAZHQHGnwmJFb3ZoB00qAWgIR0Chihg3974SdX2UKGgGR0Bw+xqmCROlaAdNJwFoCEdAoYpbEzfrKXV9lChoBkdAbKfp7kXDWWgHTVcBaAhHQKGLml2NedF1fZQoaAZHQHIgpkoWpIdoB03MAWgIR0Chi6qzzErHdX2UKGgGR0BynCCDmKZVaAdNTQFoCEdAoYxK6xxDLXV9lChoBkdAcJYIMBp5/2gHS/poCEdAoYxsgB91EHV9lChoBkdAcBKUrCm/FmgHTRsBaAhHQKGMsxgRbr11fZQoaAZHQHC3I6Kcd5poB01kAWgIR0ChjW+D3/PxdX2UKGgGR0Bv76naWX1KaAdNAgFoCEdAoY2se+23KHV9lChoBkdAcJuUeMhoumgHTQQBaAhHQKGN45oXbdt1fZQoaAZHQG7hjMNc4YJoB00LAWgIR0ChjgZBTn7pdX2UKGgGR0ByFM6IWP92aAdNHgFoCEdAoY5G8PFvRHV9lChoBkdAb207HyVfNWgHTQEBaAhHQKGOTLeQ+2V1fZQoaAZHQHEtvAGjbi9oB00JAWgIR0ChjowIldC3dX2UKGgGR0ByjJHSWqtHaAdNPQFoCEdAoY7Htx+8XnV9lChoBkdARcUcsDnvD2gHS7xoCEdAoY7HzBhx53V9lChoBkdAcXpROUMXrWgHTRQBaAhHQKGO7VkMCtB1fZQoaAZHQHHoMj3VTaVoB00FAWgIR0Chj8jEm6XjdX2UKGgGR0Bvt+z8gpz+aAdNFAFoCEdAoZEVHtnf23V9lChoBkdAbg2VtXPqs2gHTQcBaAhHQKGRtLoOhCd1fZQoaAZHQHCKTQmeDnNoB01HAWgIR0ChkcU65oXbdX2UKGgGR0ByVVzq8lHCaAdNIQFoCEdAoZLhQBPsRnV9lChoBkdAcKiFpfx+a2gHS/doCEdAoZta5sj3VXV9lChoBkdAb1r5prULD2gHTUoBaAhHQKGbxhrnDBN1fZQoaAZHQHC8xzFMqSZoB00qAWgIR0Chm9/+KjzqdX2UKGgGR0Bw0SQCCBf8aAdNGgFoCEdAoZxKo86mwnV9lChoBkdAb0QPJ7sv7GgHTVgBaAhHQKGcceT3Zf51fZQoaAZHQHBveaF23a1oB01BAWgIR0ChnNpuuRs/dX2UKGgGR0Bxcco6S1VpaAdNWQFoCEdAoZ0CsOoYN3V9lChoBkdAb2+QYDTz/mgHTQACaAhHQKGeLdVvMr51fZQoaAZHQGwQQCr92oxoB00fAWgIR0ChnjQAU+LWdX2UKGgGR0BhGspG4I8haAdN6ANoCEdAoZ5cqrilznV9lChoBkdAb30Zy+6AfGgHTRgBaAhHQKGfl6sQumJ1fZQoaAZHQHJ0prk8zRBoB00oAWgIR0ChoL+yAxzrdX2UKGgGR0BxPriyY5T7aAdNCwFoCEdAoaHiDwpe/3V9lChoBkdAbvEeK8+Ro2gHTTQBaAhHQKGiPEehf0F1fZQoaAZHQGFiNJ4B3idoB03oA2gIR0ChokG51/2CdX2UKGgGR0BsjBmRNh3JaAdNJAFoCEdAoaJWNDMNdHV9lChoBkdAciVE61b7j2gHTSsCaAhHQKGilWBBiTd1fZQoaAZHQHAKDvmYBvJoB01IAWgIR0ChoriZF5OadX2UKGgGR0BwliwFC9h7aAdNkQFoCEdAoaLk+5e7c3V9lChoBkdAcJ8XCTEBKmgHTRkBaAhHQKGi5YzSCvp1fZQoaAZHQHKSLGNrCWNoB01JAWgIR0Cho1bwSamXdX2UKGgGR0BwvfKISDh+aAdL+mgIR0Cho2Md1dPddX2UKGgGR0BsE3oouwotaAdNTwFoCEdAoaPFrylN13V9lChoBkdAcEs1M/QjU2gHTXYBaAhHQKGj6R5kbxV1fZQoaAZHQHGaio4uK4xoB00HAWgIR0ChpHV+Zw4sdX2UKGgGR0BxWujj7yhBaAdNZgFoCEdAoaTkE/0NBnV9lChoBkdAcUr3OfNA1WgHS/RoCEdAoaaIJokAxXV9lChoBkdAawAjUutfX2gHTSMBaAhHQKGnMrDqGDd1fZQoaAZHQHKUK46Oo5xoB00KAWgIR0Chp3BzmwJPdX2UKGgGR0BucaIP9UCJaAdNLAFoCEdAoad84cWCVnV9lChoBkdAcPyaIvalDWgHTVABaAhHQKGnzRGc4HZ1fZQoaAZHQG/qGbCrLhdoB0v/aAhHQKGn3LhaTwF1fZQoaAZHQHFmTI/7iyZoB00SAmgIR0ChqD27voeQdX2UKGgGR0BxthDeCTUzaAdNQAFoCEdAoahLIV/MGHV9lChoBkdAcXidpqREGGgHTUIBaAhHQKGponx8UmF1fZQoaAZHQHH/zZcs189oB00XAWgIR0ChqbWsaKk3dX2UKGgGR0Br2xgeA/cGaAdNCQFoCEdAoanuZssQNHV9lChoBkdAcIHQZXMhYGgHTZQBaAhHQKGqANiH6/J1fZQoaAZHQHE/7XxvvSdoB02nAWgIR0ChqtrRa5f/dX2UKGgGR0ByUdKBd2PlaAdN+QFoCEdAoasKWVu76HV9lChoBkdAbJFmKZUkwGgHTRMBaAhHQKGsYHObAk91fZQoaAZHQG8pvOyE+PloB00iAWgIR0ChrHSDIzWPdX2UKGgGR0BymAbtJFspaAdNBQFoCEdAoaztbRneznV9lChoBkdAcXgeSB9TgmgHTSQBaAhHQKGtByR0U491fZQoaAZHQHDv6vV3EAJoB008AWgIR0ChrTHMUypJdX2UKGgGR0Bx4wlMRHwxaAdNEwFoCEdAoa6ef9P1tnV9lChoBkdAbX861b7j1mgHTbEBaAhHQKGunzV+Zw51fZQoaAZHQGt8u3c580FoB02CAWgIR0ChruoZqEeydWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 252, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}