Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 255.79 +/- 22.22
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7e954aca6ef0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e954aca6f80>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e954aca7010>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e954aca70a0>", "_build": "<function ActorCriticPolicy._build at 0x7e954aca7130>", "forward": "<function ActorCriticPolicy.forward at 0x7e954aca71c0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e954aca7250>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e954aca72e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7e954aca7370>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e954aca7400>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e954aca7490>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e954aca7520>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e95a9c8dd40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1731163455348284819, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIDQBj1D7Xm8xMqcOy8P37t7w9U9IbUBPgAAgD8AAIA/DQmbPXE9RbdstS44q5NjM61J2boWck63AACAPwAAgD/zRuq9M0F7PzuP770qHpG++pH5vdiGV70AAAAAAAAAAOY/Cz4S+CE+Oqm9PF44Xb7vuI08LCcPPQAAAAAAAAAAM19nPeEQobodlIKz0Wx2rOUh4blEwa0zAACAPwAAgD8zbZs8ls1DPe5Fxbv7P06+r2I8O8roRrsAAAAAAAAAAM3H2rx0sLQ/mzEovw51Ar3FyJg8len7PAAAAAAAAAAAgM83PSWXkz8Oqt49n2ecvoC/Rj0ui7s9AAAAAAAAAACzaBy9cUFxuyRGDDwmYoU891bAvLPXaj0AAIA/AACAP3J+rL6Tdhw/2tApPjEglL7HUby9PSbPPQAAAAAAAAAA5vYDvVCerD7aKzs9PlEXvnArYzjt/pI9AAAAAAAAAAAAftM8oqUOPl6Svb30+32+KS1xvRSKg70AAAAAAAAAAFBter4tJ4M/rbh1vqQppb6qWDi+/y45OwAAAAAAAAAAwMKZPu8zNj9coS++iO6Hvi5AMD0KVgU9AAAAAAAAAAAALWg9FHSluuLgrjctq5gybHatuvUnybYAAIA/AACAPzOmML2sRbI/69AIvwrbML4kzhU7sBdmvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG+O9g4OtnyMAWyUTZkBjAF0lEdAnPqsM7U5MnV9lChoBkdAcbmctGus92gHTVoBaAhHQJz7EkeIVM51fZQoaAZHQHEO4nv2GqRoB01GAWgIR0Cc/BpgkTpQdX2UKGgGR0Bx6XWiDdxiaAdNJgFoCEdAnPwoP5HmR3V9lChoBkdAcD8udf9gnmgHTT0BaAhHQJz8X0voNd91fZQoaAZHQEdRCY1He8BoB0v4aAhHQJz8i0E5hjR1fZQoaAZHQHJJpIg/1QJoB00vAWgIR0Cc/j5M10kodX2UKGgGR0BxAXYEnssyaAdNagFoCEdAnP+qHsTnJXV9lChoBkdAb4eAf+0gKWgHTVgBaAhHQJ0ALBdld1N1fZQoaAZHQGvDanR9gF5oB013AWgIR0CdAGqo60Y1dX2UKGgGR0BsY6VUuL75aAdNRAFoCEdAnQD0adc0L3V9lChoBkdARH3gtOEdvWgHTQ0BaAhHQJ0BBdLQHA11fZQoaAZHQG1WfA9FF2FoB02ZAWgIR0CdAhMQmNR4dX2UKGgGR0BxK1WJaaCuaAdNZAFoCEdAnQJMNx2jf3V9lChoBkdAbqzRjSXt0GgHTT4BaAhHQJ0FGD/VAiV1fZQoaAZHQG+U5wfhddFoB01gAWgIR0CdBeNfPX05dX2UKGgGR0BvDP3+MqBmaAdNbwFoCEdAnQZvYzzmOnV9lChoBkdAbwPuEVWS2mgHTTwBaAhHQJ0GzVH4Glh1fZQoaAZHQG7VlEJBw/BoB01BAWgIR0CdBwf779AHdX2UKGgGR0BtOno3aSLZaAdNRQFoCEdAnQdoKQaJh3V9lChoBkdAcE4bp/wy7GgHTW4BaAhHQJ0HYy+HrQh1fZQoaAZHQHAeY91U2k1oB01hAWgIR0CdCHuFHrhSdX2UKGgGR0Br4Mz/IbOvaAdNQAFoCEdAnQkPMjeKsXV9lChoBkdAcMfDmr8zh2gHTTIBaAhHQJ0J93aBZp11fZQoaAZHQHFLGthd+odoB00mAWgIR0CdCtELH+6zdX2UKGgGR0BuTFQCSzPbaAdNSQFoCEdAnQsoHHFPznV9lChoBkdAbwWA93bEgmgHTUoBaAhHQJ0LgslLOA11fZQoaAZHQHE5Y0ZWJadoB00+AWgIR0CdC6z67/XHdX2UKGgGR0BuCiV8kUsWaAdNTwFoCEdAnQ20auOjqXV9lChoBkdAcArtelbeM2gHTUoBaAhHQJ0NzfJmukl1fZQoaAZHQHEbQBcRlH1oB00zAWgIR0CdEEw71ZkkdX2UKGgGR0BB4Dl5nlGPaAdL+WgIR0CdEGwxFiKBdX2UKGgGR0BxfiGxlg+haAdNIgFoCEdAnRGDQ7cO9XV9lChoBkdAcTnYEGJN02gHTUEBaAhHQJ0SgfHPu5V1fZQoaAZHQGurGkvboKVoB01AAWgIR0CdEyw4bS7YdX2UKGgGR0A7UqSX+l0paAdNCwFoCEdAnRTljNIK+nV9lChoBkdAcSJW+oLofWgHTZABaAhHQJ0VakoF3ZB1fZQoaAZHQEcueZof0VdoB0v/aAhHQJ0Vl8ohIOJ1fZQoaAZHQHICjTnaFmFoB01uAWgIR0CdFcfXPJJYdX2UKGgGR0BvB+9vjwQUaAdNTQFoCEdAnRXT0g8r7XV9lChoBkdAcNUu2qkuYmgHTU0BaAhHQJ0WoW0qpcZ1fZQoaAZHQHJy9t2s7uFoB00fAWgIR0CdGXCDVYp2dX2UKGgGR0BtHsRtgrpaaAdNVQFoCEdAnRl9kSVW0nV9lChoBkdAcA5pAlfJFWgHTTgBaAhHQJ0abO6d1+11fZQoaAZHQG2xc8La24NoB02KAWgIR0CdGvBK+SKWdX2UKGgGR0BtImTPjXFtaAdNmQFoCEdAnRu3fVI7NnV9lChoBkdAb/Jst03fh2gHTVABaAhHQJ0dk77sOXp1fZQoaAZHQGsNVvddmg9oB01aAWgIR0CdHeMoMKCydX2UKGgGR0BwpTzBhx5taAdNPAFoCEdAnR6GxhUip3V9lChoBkdAC4Hh0hePaWgHTR8BaAhHQJ0fYBEKE391fZQoaAZHQG/Z2e6I3zdoB01pAWgIR0CdH1wcYIjXdX2UKGgGR0Bti3VoYekpaAdNYQFoCEdAnTFqtknTiXV9lChoBkdAb3vschkiEGgHTSoBaAhHQJ0xhbqyGBZ1fZQoaAZHQG7G9joZAIJoB01NAWgIR0CdMmzoUzsQdX2UKGgGR0BrGyEpRXOoaAdNOQFoCEdAnTKIraufVnV9lChoBkdAbeNl5nlGPWgHTXkBaAhHQJ0zpoysS011fZQoaAZHQHGIeMERradoB01xAWgIR0CdM6clPacqdX2UKGgGR0BNOFHz6JqJaAdL/2gIR0CdNBZwGW2PdX2UKGgGR0BrVV21UlzEaAdNSQFoCEdAnTV3d9Dx9XV9lChoBkdAbP6F23azvGgHTXABaAhHQJ02np4bCJp1fZQoaAZHQHCTp+6RQrNoB01HAWgIR0CdNqilzltCdX2UKGgGR0Bx4DKdQO4HaAdNUgFoCEdAnTernoxHoXV9lChoBkdAcJS0AtFrmGgHTSYBaAhHQJ034vtdAxB1fZQoaAZHQHFzOh0yP+5oB000AWgIR0CdOI6S1Vo6dX2UKGgGR0Bsmf6fra/RaAdNQgFoCEdAnTqIHLRrrXV9lChoBkdAbPq4aP0ZnGgHTWkBaAhHQJ07HSQYDT11fZQoaAZHQG0CamoBJZpoB006AWgIR0CdO07btZ3cdX2UKGgGR0BxtqGM4tHyaAdNOgFoCEdAnTtpRXOnmHV9lChoBkdAa6ZXlKbrkmgHTS0BaAhHQJ08DaakRBh1fZQoaAZHQG+Fu3UhFE1oB01CAWgIR0CdPJjvd/KAdX2UKGgGR0BwAjSKFZgYaAdNhAFoCEdAnTzDZg5R0nV9lChoBkdAcDDLvCuU2WgHTSQBaAhHQJ086TpxFRZ1fZQoaAZHQHIlkTHsC1ZoB00vAWgIR0CdPTUMG5c1dX2UKGgGR0BwWqNWEK3NaAdNQgFoCEdAnUAPMGHHm3V9lChoBkdAceJdzXBgu2gHTSkBaAhHQJ1ArDziCJ51fZQoaAZHQG0jQeNkvsZoB02BAWgIR0CdQMdQfp2VdX2UKGgGR0BwamHk92X+aAdNRQFoCEdAnUOkZiuuBHV9lChoBkdAcGCmig00nGgHTXIBaAhHQJ1ELfO2RaJ1fZQoaAZHQG82oC2c8T1oB01eAWgIR0CdRTiEQGwBdX2UKGgGR0BvPrUqhDgJaAdNPAFoCEdAnUhwFPi1iXV9lChoBkdAcdRJg9eQdWgHTTkBaAhHQJ1IuM5wOvt1fZQoaAZHQG+Orl/6O5toB01YAWgIR0CdSR/WlMyrdX2UKGgGR0Bqw9UADJU6aAdNNwFoCEdAnUmsstkFwHV9lChoBkdAcHTezD4xlGgHTVEBaAhHQJ1Jytq59Vp1fZQoaAZHQG+IjZlFtsNoB02lAWgIR0CdSiyM1jy4dX2UKGgGR0BqQykTHsC1aAdNPAFoCEdAnUrhWcSXdHV9lChoBkdAb0G7iADq4mgHTToBaAhHQJ1LAT9KmKt1fZQoaAZHQHItC75Ec81oB008AWgIR0CdS2QyhzvJdX2UKGgGR0Bx7NUvPC2uaAdNdAFoCEdAnUxRlg+hXnV9lChoBkdAbtWuq3mV7mgHTScBaAhHQJ1M+t5le4V1fZQoaAZHQHFaC/47A+JoB004AWgIR0CdTb5imVJMdX2UKGgGR0BLWOZssQNDaAdL+mgIR0CdTcZowmE5dX2UKGgGR0By7hwtJ4B4aAdNPwFoCEdAnU39mcvugHV9lChoBkdAcHVBTn7pFGgHTU4BaAhHQJ1Qfm0VrRB1fZQoaAZHQG+zYtQKrrBoB005AWgIR0CdUHzwMH8kdX2UKGgGR0Bw76gh8pkPaAdNMwFoCEdAnVJFWsA/93V9lChoBkdAcUeiAUcn3WgHTTsBaAhHQJ1SwX7+DOF1fZQoaAZHQHCdaxLTQVtoB008AWgIR0CdU+BGx2SudX2UKGgGR0By0ztY0VJuaAdNZgFoCEdAnVSwJXyRS3V9lChoBkdAblmGDcuanmgHTV0BaAhHQJ1U3JRwZO11ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 256, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.0+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c4fb78bb802783b7c6c66c8360b1ff0189708acf8ae0dbf6e59a4bcaefd21696
|
3 |
+
size 148016
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7e954aca6ef0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e954aca6f80>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e954aca7010>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e954aca70a0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7e954aca7130>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7e954aca71c0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7e954aca7250>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e954aca72e0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7e954aca7370>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e954aca7400>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e954aca7490>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7e954aca7520>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7e95a9c8dd40>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1731163455348284819,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIDQBj1D7Xm8xMqcOy8P37t7w9U9IbUBPgAAgD8AAIA/DQmbPXE9RbdstS44q5NjM61J2boWck63AACAPwAAgD/zRuq9M0F7PzuP770qHpG++pH5vdiGV70AAAAAAAAAAOY/Cz4S+CE+Oqm9PF44Xb7vuI08LCcPPQAAAAAAAAAAM19nPeEQobodlIKz0Wx2rOUh4blEwa0zAACAPwAAgD8zbZs8ls1DPe5Fxbv7P06+r2I8O8roRrsAAAAAAAAAAM3H2rx0sLQ/mzEovw51Ar3FyJg8len7PAAAAAAAAAAAgM83PSWXkz8Oqt49n2ecvoC/Rj0ui7s9AAAAAAAAAACzaBy9cUFxuyRGDDwmYoU891bAvLPXaj0AAIA/AACAP3J+rL6Tdhw/2tApPjEglL7HUby9PSbPPQAAAAAAAAAA5vYDvVCerD7aKzs9PlEXvnArYzjt/pI9AAAAAAAAAAAAftM8oqUOPl6Svb30+32+KS1xvRSKg70AAAAAAAAAAFBter4tJ4M/rbh1vqQppb6qWDi+/y45OwAAAAAAAAAAwMKZPu8zNj9coS++iO6Hvi5AMD0KVgU9AAAAAAAAAAAALWg9FHSluuLgrjctq5gybHatuvUnybYAAIA/AACAPzOmML2sRbI/69AIvwrbML4kzhU7sBdmvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVPwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG+O9g4OtnyMAWyUTZkBjAF0lEdAnPqsM7U5MnV9lChoBkdAcbmctGus92gHTVoBaAhHQJz7EkeIVM51fZQoaAZHQHEO4nv2GqRoB01GAWgIR0Cc/BpgkTpQdX2UKGgGR0Bx6XWiDdxiaAdNJgFoCEdAnPwoP5HmR3V9lChoBkdAcD8udf9gnmgHTT0BaAhHQJz8X0voNd91fZQoaAZHQEdRCY1He8BoB0v4aAhHQJz8i0E5hjR1fZQoaAZHQHJJpIg/1QJoB00vAWgIR0Cc/j5M10kodX2UKGgGR0BxAXYEnssyaAdNagFoCEdAnP+qHsTnJXV9lChoBkdAb4eAf+0gKWgHTVgBaAhHQJ0ALBdld1N1fZQoaAZHQGvDanR9gF5oB013AWgIR0CdAGqo60Y1dX2UKGgGR0BsY6VUuL75aAdNRAFoCEdAnQD0adc0L3V9lChoBkdARH3gtOEdvWgHTQ0BaAhHQJ0BBdLQHA11fZQoaAZHQG1WfA9FF2FoB02ZAWgIR0CdAhMQmNR4dX2UKGgGR0BxK1WJaaCuaAdNZAFoCEdAnQJMNx2jf3V9lChoBkdAbqzRjSXt0GgHTT4BaAhHQJ0FGD/VAiV1fZQoaAZHQG+U5wfhddFoB01gAWgIR0CdBeNfPX05dX2UKGgGR0BvDP3+MqBmaAdNbwFoCEdAnQZvYzzmOnV9lChoBkdAbwPuEVWS2mgHTTwBaAhHQJ0GzVH4Glh1fZQoaAZHQG7VlEJBw/BoB01BAWgIR0CdBwf779AHdX2UKGgGR0BtOno3aSLZaAdNRQFoCEdAnQdoKQaJh3V9lChoBkdAcE4bp/wy7GgHTW4BaAhHQJ0HYy+HrQh1fZQoaAZHQHAeY91U2k1oB01hAWgIR0CdCHuFHrhSdX2UKGgGR0Br4Mz/IbOvaAdNQAFoCEdAnQkPMjeKsXV9lChoBkdAcMfDmr8zh2gHTTIBaAhHQJ0J93aBZp11fZQoaAZHQHFLGthd+odoB00mAWgIR0CdCtELH+6zdX2UKGgGR0BuTFQCSzPbaAdNSQFoCEdAnQsoHHFPznV9lChoBkdAbwWA93bEgmgHTUoBaAhHQJ0LgslLOA11fZQoaAZHQHE5Y0ZWJadoB00+AWgIR0CdC6z67/XHdX2UKGgGR0BuCiV8kUsWaAdNTwFoCEdAnQ20auOjqXV9lChoBkdAcArtelbeM2gHTUoBaAhHQJ0NzfJmukl1fZQoaAZHQHEbQBcRlH1oB00zAWgIR0CdEEw71ZkkdX2UKGgGR0BB4Dl5nlGPaAdL+WgIR0CdEGwxFiKBdX2UKGgGR0BxfiGxlg+haAdNIgFoCEdAnRGDQ7cO9XV9lChoBkdAcTnYEGJN02gHTUEBaAhHQJ0SgfHPu5V1fZQoaAZHQGurGkvboKVoB01AAWgIR0CdEyw4bS7YdX2UKGgGR0A7UqSX+l0paAdNCwFoCEdAnRTljNIK+nV9lChoBkdAcSJW+oLofWgHTZABaAhHQJ0VakoF3ZB1fZQoaAZHQEcueZof0VdoB0v/aAhHQJ0Vl8ohIOJ1fZQoaAZHQHICjTnaFmFoB01uAWgIR0CdFcfXPJJYdX2UKGgGR0BvB+9vjwQUaAdNTQFoCEdAnRXT0g8r7XV9lChoBkdAcNUu2qkuYmgHTU0BaAhHQJ0WoW0qpcZ1fZQoaAZHQHJy9t2s7uFoB00fAWgIR0CdGXCDVYp2dX2UKGgGR0BtHsRtgrpaaAdNVQFoCEdAnRl9kSVW0nV9lChoBkdAcA5pAlfJFWgHTTgBaAhHQJ0abO6d1+11fZQoaAZHQG2xc8La24NoB02KAWgIR0CdGvBK+SKWdX2UKGgGR0BtImTPjXFtaAdNmQFoCEdAnRu3fVI7NnV9lChoBkdAb/Jst03fh2gHTVABaAhHQJ0dk77sOXp1fZQoaAZHQGsNVvddmg9oB01aAWgIR0CdHeMoMKCydX2UKGgGR0BwpTzBhx5taAdNPAFoCEdAnR6GxhUip3V9lChoBkdAC4Hh0hePaWgHTR8BaAhHQJ0fYBEKE391fZQoaAZHQG/Z2e6I3zdoB01pAWgIR0CdH1wcYIjXdX2UKGgGR0Bti3VoYekpaAdNYQFoCEdAnTFqtknTiXV9lChoBkdAb3vschkiEGgHTSoBaAhHQJ0xhbqyGBZ1fZQoaAZHQG7G9joZAIJoB01NAWgIR0CdMmzoUzsQdX2UKGgGR0BrGyEpRXOoaAdNOQFoCEdAnTKIraufVnV9lChoBkdAbeNl5nlGPWgHTXkBaAhHQJ0zpoysS011fZQoaAZHQHGIeMERradoB01xAWgIR0CdM6clPacqdX2UKGgGR0BNOFHz6JqJaAdL/2gIR0CdNBZwGW2PdX2UKGgGR0BrVV21UlzEaAdNSQFoCEdAnTV3d9Dx9XV9lChoBkdAbP6F23azvGgHTXABaAhHQJ02np4bCJp1fZQoaAZHQHCTp+6RQrNoB01HAWgIR0CdNqilzltCdX2UKGgGR0Bx4DKdQO4HaAdNUgFoCEdAnTernoxHoXV9lChoBkdAcJS0AtFrmGgHTSYBaAhHQJ034vtdAxB1fZQoaAZHQHFzOh0yP+5oB000AWgIR0CdOI6S1Vo6dX2UKGgGR0Bsmf6fra/RaAdNQgFoCEdAnTqIHLRrrXV9lChoBkdAbPq4aP0ZnGgHTWkBaAhHQJ07HSQYDT11fZQoaAZHQG0CamoBJZpoB006AWgIR0CdO07btZ3cdX2UKGgGR0BxtqGM4tHyaAdNOgFoCEdAnTtpRXOnmHV9lChoBkdAa6ZXlKbrkmgHTS0BaAhHQJ08DaakRBh1fZQoaAZHQG+Fu3UhFE1oB01CAWgIR0CdPJjvd/KAdX2UKGgGR0BwAjSKFZgYaAdNhAFoCEdAnTzDZg5R0nV9lChoBkdAcDDLvCuU2WgHTSQBaAhHQJ086TpxFRZ1fZQoaAZHQHIlkTHsC1ZoB00vAWgIR0CdPTUMG5c1dX2UKGgGR0BwWqNWEK3NaAdNQgFoCEdAnUAPMGHHm3V9lChoBkdAceJdzXBgu2gHTSkBaAhHQJ1ArDziCJ51fZQoaAZHQG0jQeNkvsZoB02BAWgIR0CdQMdQfp2VdX2UKGgGR0BwamHk92X+aAdNRQFoCEdAnUOkZiuuBHV9lChoBkdAcGCmig00nGgHTXIBaAhHQJ1ELfO2RaJ1fZQoaAZHQG82oC2c8T1oB01eAWgIR0CdRTiEQGwBdX2UKGgGR0BvPrUqhDgJaAdNPAFoCEdAnUhwFPi1iXV9lChoBkdAcdRJg9eQdWgHTTkBaAhHQJ1IuM5wOvt1fZQoaAZHQG+Orl/6O5toB01YAWgIR0CdSR/WlMyrdX2UKGgGR0Bqw9UADJU6aAdNNwFoCEdAnUmsstkFwHV9lChoBkdAcHTezD4xlGgHTVEBaAhHQJ1Jytq59Vp1fZQoaAZHQG+IjZlFtsNoB02lAWgIR0CdSiyM1jy4dX2UKGgGR0BqQykTHsC1aAdNPAFoCEdAnUrhWcSXdHV9lChoBkdAb0G7iADq4mgHTToBaAhHQJ1LAT9KmKt1fZQoaAZHQHItC75Ec81oB008AWgIR0CdS2QyhzvJdX2UKGgGR0Bx7NUvPC2uaAdNdAFoCEdAnUxRlg+hXnV9lChoBkdAbtWuq3mV7mgHTScBaAhHQJ1M+t5le4V1fZQoaAZHQHFaC/47A+JoB004AWgIR0CdTb5imVJMdX2UKGgGR0BLWOZssQNDaAdL+mgIR0CdTcZowmE5dX2UKGgGR0By7hwtJ4B4aAdNPwFoCEdAnU39mcvugHV9lChoBkdAcHVBTn7pFGgHTU4BaAhHQJ1Qfm0VrRB1fZQoaAZHQG+zYtQKrrBoB005AWgIR0CdUHzwMH8kdX2UKGgGR0Bw76gh8pkPaAdNMwFoCEdAnVJFWsA/93V9lChoBkdAcUeiAUcn3WgHTTsBaAhHQJ1SwX7+DOF1fZQoaAZHQHCdaxLTQVtoB008AWgIR0CdU+BGx2SudX2UKGgGR0By0ztY0VJuaAdNZgFoCEdAnVSwJXyRS3V9lChoBkdAblmGDcuanmgHTV0BaAhHQJ1U3JRwZO11ZS4="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 256,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e68497ed47996e418518508664a61d504c4e0b8f5311261f463be13efcbba234
|
3 |
+
size 88362
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7be326dab40d066cf393f547ac28e2c82107755becc8f26fea07bdb565f5c2af
|
3 |
+
size 43762
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.5.0+cu121
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.26.4
|
7 |
+
- Cloudpickle: 3.1.0
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (163 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 255.7893234586881, "std_reward": 22.2230832731047, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-11-09T15:03:42.277409"}
|