iamjoy commited on
Commit
531e82b
·
verified ·
1 Parent(s): 43f189e

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 255.79 +/- 22.22
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7e954aca6ef0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e954aca6f80>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e954aca7010>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e954aca70a0>", "_build": "<function ActorCriticPolicy._build at 0x7e954aca7130>", "forward": "<function ActorCriticPolicy.forward at 0x7e954aca71c0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e954aca7250>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e954aca72e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7e954aca7370>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e954aca7400>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e954aca7490>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e954aca7520>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e95a9c8dd40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1731163455348284819, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIDQBj1D7Xm8xMqcOy8P37t7w9U9IbUBPgAAgD8AAIA/DQmbPXE9RbdstS44q5NjM61J2boWck63AACAPwAAgD/zRuq9M0F7PzuP770qHpG++pH5vdiGV70AAAAAAAAAAOY/Cz4S+CE+Oqm9PF44Xb7vuI08LCcPPQAAAAAAAAAAM19nPeEQobodlIKz0Wx2rOUh4blEwa0zAACAPwAAgD8zbZs8ls1DPe5Fxbv7P06+r2I8O8roRrsAAAAAAAAAAM3H2rx0sLQ/mzEovw51Ar3FyJg8len7PAAAAAAAAAAAgM83PSWXkz8Oqt49n2ecvoC/Rj0ui7s9AAAAAAAAAACzaBy9cUFxuyRGDDwmYoU891bAvLPXaj0AAIA/AACAP3J+rL6Tdhw/2tApPjEglL7HUby9PSbPPQAAAAAAAAAA5vYDvVCerD7aKzs9PlEXvnArYzjt/pI9AAAAAAAAAAAAftM8oqUOPl6Svb30+32+KS1xvRSKg70AAAAAAAAAAFBter4tJ4M/rbh1vqQppb6qWDi+/y45OwAAAAAAAAAAwMKZPu8zNj9coS++iO6Hvi5AMD0KVgU9AAAAAAAAAAAALWg9FHSluuLgrjctq5gybHatuvUnybYAAIA/AACAPzOmML2sRbI/69AIvwrbML4kzhU7sBdmvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG+O9g4OtnyMAWyUTZkBjAF0lEdAnPqsM7U5MnV9lChoBkdAcbmctGus92gHTVoBaAhHQJz7EkeIVM51fZQoaAZHQHEO4nv2GqRoB01GAWgIR0Cc/BpgkTpQdX2UKGgGR0Bx6XWiDdxiaAdNJgFoCEdAnPwoP5HmR3V9lChoBkdAcD8udf9gnmgHTT0BaAhHQJz8X0voNd91fZQoaAZHQEdRCY1He8BoB0v4aAhHQJz8i0E5hjR1fZQoaAZHQHJJpIg/1QJoB00vAWgIR0Cc/j5M10kodX2UKGgGR0BxAXYEnssyaAdNagFoCEdAnP+qHsTnJXV9lChoBkdAb4eAf+0gKWgHTVgBaAhHQJ0ALBdld1N1fZQoaAZHQGvDanR9gF5oB013AWgIR0CdAGqo60Y1dX2UKGgGR0BsY6VUuL75aAdNRAFoCEdAnQD0adc0L3V9lChoBkdARH3gtOEdvWgHTQ0BaAhHQJ0BBdLQHA11fZQoaAZHQG1WfA9FF2FoB02ZAWgIR0CdAhMQmNR4dX2UKGgGR0BxK1WJaaCuaAdNZAFoCEdAnQJMNx2jf3V9lChoBkdAbqzRjSXt0GgHTT4BaAhHQJ0FGD/VAiV1fZQoaAZHQG+U5wfhddFoB01gAWgIR0CdBeNfPX05dX2UKGgGR0BvDP3+MqBmaAdNbwFoCEdAnQZvYzzmOnV9lChoBkdAbwPuEVWS2mgHTTwBaAhHQJ0GzVH4Glh1fZQoaAZHQG7VlEJBw/BoB01BAWgIR0CdBwf779AHdX2UKGgGR0BtOno3aSLZaAdNRQFoCEdAnQdoKQaJh3V9lChoBkdAcE4bp/wy7GgHTW4BaAhHQJ0HYy+HrQh1fZQoaAZHQHAeY91U2k1oB01hAWgIR0CdCHuFHrhSdX2UKGgGR0Br4Mz/IbOvaAdNQAFoCEdAnQkPMjeKsXV9lChoBkdAcMfDmr8zh2gHTTIBaAhHQJ0J93aBZp11fZQoaAZHQHFLGthd+odoB00mAWgIR0CdCtELH+6zdX2UKGgGR0BuTFQCSzPbaAdNSQFoCEdAnQsoHHFPznV9lChoBkdAbwWA93bEgmgHTUoBaAhHQJ0LgslLOA11fZQoaAZHQHE5Y0ZWJadoB00+AWgIR0CdC6z67/XHdX2UKGgGR0BuCiV8kUsWaAdNTwFoCEdAnQ20auOjqXV9lChoBkdAcArtelbeM2gHTUoBaAhHQJ0NzfJmukl1fZQoaAZHQHEbQBcRlH1oB00zAWgIR0CdEEw71ZkkdX2UKGgGR0BB4Dl5nlGPaAdL+WgIR0CdEGwxFiKBdX2UKGgGR0BxfiGxlg+haAdNIgFoCEdAnRGDQ7cO9XV9lChoBkdAcTnYEGJN02gHTUEBaAhHQJ0SgfHPu5V1fZQoaAZHQGurGkvboKVoB01AAWgIR0CdEyw4bS7YdX2UKGgGR0A7UqSX+l0paAdNCwFoCEdAnRTljNIK+nV9lChoBkdAcSJW+oLofWgHTZABaAhHQJ0VakoF3ZB1fZQoaAZHQEcueZof0VdoB0v/aAhHQJ0Vl8ohIOJ1fZQoaAZHQHICjTnaFmFoB01uAWgIR0CdFcfXPJJYdX2UKGgGR0BvB+9vjwQUaAdNTQFoCEdAnRXT0g8r7XV9lChoBkdAcNUu2qkuYmgHTU0BaAhHQJ0WoW0qpcZ1fZQoaAZHQHJy9t2s7uFoB00fAWgIR0CdGXCDVYp2dX2UKGgGR0BtHsRtgrpaaAdNVQFoCEdAnRl9kSVW0nV9lChoBkdAcA5pAlfJFWgHTTgBaAhHQJ0abO6d1+11fZQoaAZHQG2xc8La24NoB02KAWgIR0CdGvBK+SKWdX2UKGgGR0BtImTPjXFtaAdNmQFoCEdAnRu3fVI7NnV9lChoBkdAb/Jst03fh2gHTVABaAhHQJ0dk77sOXp1fZQoaAZHQGsNVvddmg9oB01aAWgIR0CdHeMoMKCydX2UKGgGR0BwpTzBhx5taAdNPAFoCEdAnR6GxhUip3V9lChoBkdAC4Hh0hePaWgHTR8BaAhHQJ0fYBEKE391fZQoaAZHQG/Z2e6I3zdoB01pAWgIR0CdH1wcYIjXdX2UKGgGR0Bti3VoYekpaAdNYQFoCEdAnTFqtknTiXV9lChoBkdAb3vschkiEGgHTSoBaAhHQJ0xhbqyGBZ1fZQoaAZHQG7G9joZAIJoB01NAWgIR0CdMmzoUzsQdX2UKGgGR0BrGyEpRXOoaAdNOQFoCEdAnTKIraufVnV9lChoBkdAbeNl5nlGPWgHTXkBaAhHQJ0zpoysS011fZQoaAZHQHGIeMERradoB01xAWgIR0CdM6clPacqdX2UKGgGR0BNOFHz6JqJaAdL/2gIR0CdNBZwGW2PdX2UKGgGR0BrVV21UlzEaAdNSQFoCEdAnTV3d9Dx9XV9lChoBkdAbP6F23azvGgHTXABaAhHQJ02np4bCJp1fZQoaAZHQHCTp+6RQrNoB01HAWgIR0CdNqilzltCdX2UKGgGR0Bx4DKdQO4HaAdNUgFoCEdAnTernoxHoXV9lChoBkdAcJS0AtFrmGgHTSYBaAhHQJ034vtdAxB1fZQoaAZHQHFzOh0yP+5oB000AWgIR0CdOI6S1Vo6dX2UKGgGR0Bsmf6fra/RaAdNQgFoCEdAnTqIHLRrrXV9lChoBkdAbPq4aP0ZnGgHTWkBaAhHQJ07HSQYDT11fZQoaAZHQG0CamoBJZpoB006AWgIR0CdO07btZ3cdX2UKGgGR0BxtqGM4tHyaAdNOgFoCEdAnTtpRXOnmHV9lChoBkdAa6ZXlKbrkmgHTS0BaAhHQJ08DaakRBh1fZQoaAZHQG+Fu3UhFE1oB01CAWgIR0CdPJjvd/KAdX2UKGgGR0BwAjSKFZgYaAdNhAFoCEdAnTzDZg5R0nV9lChoBkdAcDDLvCuU2WgHTSQBaAhHQJ086TpxFRZ1fZQoaAZHQHIlkTHsC1ZoB00vAWgIR0CdPTUMG5c1dX2UKGgGR0BwWqNWEK3NaAdNQgFoCEdAnUAPMGHHm3V9lChoBkdAceJdzXBgu2gHTSkBaAhHQJ1ArDziCJ51fZQoaAZHQG0jQeNkvsZoB02BAWgIR0CdQMdQfp2VdX2UKGgGR0BwamHk92X+aAdNRQFoCEdAnUOkZiuuBHV9lChoBkdAcGCmig00nGgHTXIBaAhHQJ1ELfO2RaJ1fZQoaAZHQG82oC2c8T1oB01eAWgIR0CdRTiEQGwBdX2UKGgGR0BvPrUqhDgJaAdNPAFoCEdAnUhwFPi1iXV9lChoBkdAcdRJg9eQdWgHTTkBaAhHQJ1IuM5wOvt1fZQoaAZHQG+Orl/6O5toB01YAWgIR0CdSR/WlMyrdX2UKGgGR0Bqw9UADJU6aAdNNwFoCEdAnUmsstkFwHV9lChoBkdAcHTezD4xlGgHTVEBaAhHQJ1Jytq59Vp1fZQoaAZHQG+IjZlFtsNoB02lAWgIR0CdSiyM1jy4dX2UKGgGR0BqQykTHsC1aAdNPAFoCEdAnUrhWcSXdHV9lChoBkdAb0G7iADq4mgHTToBaAhHQJ1LAT9KmKt1fZQoaAZHQHItC75Ec81oB008AWgIR0CdS2QyhzvJdX2UKGgGR0Bx7NUvPC2uaAdNdAFoCEdAnUxRlg+hXnV9lChoBkdAbtWuq3mV7mgHTScBaAhHQJ1M+t5le4V1fZQoaAZHQHFaC/47A+JoB004AWgIR0CdTb5imVJMdX2UKGgGR0BLWOZssQNDaAdL+mgIR0CdTcZowmE5dX2UKGgGR0By7hwtJ4B4aAdNPwFoCEdAnU39mcvugHV9lChoBkdAcHVBTn7pFGgHTU4BaAhHQJ1Qfm0VrRB1fZQoaAZHQG+zYtQKrrBoB005AWgIR0CdUHzwMH8kdX2UKGgGR0Bw76gh8pkPaAdNMwFoCEdAnVJFWsA/93V9lChoBkdAcUeiAUcn3WgHTTsBaAhHQJ1SwX7+DOF1fZQoaAZHQHCdaxLTQVtoB008AWgIR0CdU+BGx2SudX2UKGgGR0By0ztY0VJuaAdNZgFoCEdAnVSwJXyRS3V9lChoBkdAblmGDcuanmgHTV0BaAhHQJ1U3JRwZO11ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 256, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.0+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c4fb78bb802783b7c6c66c8360b1ff0189708acf8ae0dbf6e59a4bcaefd21696
3
+ size 148016
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7e954aca6ef0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e954aca6f80>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e954aca7010>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e954aca70a0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7e954aca7130>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7e954aca71c0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e954aca7250>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e954aca72e0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7e954aca7370>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e954aca7400>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e954aca7490>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e954aca7520>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7e95a9c8dd40>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1731163455348284819,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIDQBj1D7Xm8xMqcOy8P37t7w9U9IbUBPgAAgD8AAIA/DQmbPXE9RbdstS44q5NjM61J2boWck63AACAPwAAgD/zRuq9M0F7PzuP770qHpG++pH5vdiGV70AAAAAAAAAAOY/Cz4S+CE+Oqm9PF44Xb7vuI08LCcPPQAAAAAAAAAAM19nPeEQobodlIKz0Wx2rOUh4blEwa0zAACAPwAAgD8zbZs8ls1DPe5Fxbv7P06+r2I8O8roRrsAAAAAAAAAAM3H2rx0sLQ/mzEovw51Ar3FyJg8len7PAAAAAAAAAAAgM83PSWXkz8Oqt49n2ecvoC/Rj0ui7s9AAAAAAAAAACzaBy9cUFxuyRGDDwmYoU891bAvLPXaj0AAIA/AACAP3J+rL6Tdhw/2tApPjEglL7HUby9PSbPPQAAAAAAAAAA5vYDvVCerD7aKzs9PlEXvnArYzjt/pI9AAAAAAAAAAAAftM8oqUOPl6Svb30+32+KS1xvRSKg70AAAAAAAAAAFBter4tJ4M/rbh1vqQppb6qWDi+/y45OwAAAAAAAAAAwMKZPu8zNj9coS++iO6Hvi5AMD0KVgU9AAAAAAAAAAAALWg9FHSluuLgrjctq5gybHatuvUnybYAAIA/AACAPzOmML2sRbI/69AIvwrbML4kzhU7sBdmvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVPwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG+O9g4OtnyMAWyUTZkBjAF0lEdAnPqsM7U5MnV9lChoBkdAcbmctGus92gHTVoBaAhHQJz7EkeIVM51fZQoaAZHQHEO4nv2GqRoB01GAWgIR0Cc/BpgkTpQdX2UKGgGR0Bx6XWiDdxiaAdNJgFoCEdAnPwoP5HmR3V9lChoBkdAcD8udf9gnmgHTT0BaAhHQJz8X0voNd91fZQoaAZHQEdRCY1He8BoB0v4aAhHQJz8i0E5hjR1fZQoaAZHQHJJpIg/1QJoB00vAWgIR0Cc/j5M10kodX2UKGgGR0BxAXYEnssyaAdNagFoCEdAnP+qHsTnJXV9lChoBkdAb4eAf+0gKWgHTVgBaAhHQJ0ALBdld1N1fZQoaAZHQGvDanR9gF5oB013AWgIR0CdAGqo60Y1dX2UKGgGR0BsY6VUuL75aAdNRAFoCEdAnQD0adc0L3V9lChoBkdARH3gtOEdvWgHTQ0BaAhHQJ0BBdLQHA11fZQoaAZHQG1WfA9FF2FoB02ZAWgIR0CdAhMQmNR4dX2UKGgGR0BxK1WJaaCuaAdNZAFoCEdAnQJMNx2jf3V9lChoBkdAbqzRjSXt0GgHTT4BaAhHQJ0FGD/VAiV1fZQoaAZHQG+U5wfhddFoB01gAWgIR0CdBeNfPX05dX2UKGgGR0BvDP3+MqBmaAdNbwFoCEdAnQZvYzzmOnV9lChoBkdAbwPuEVWS2mgHTTwBaAhHQJ0GzVH4Glh1fZQoaAZHQG7VlEJBw/BoB01BAWgIR0CdBwf779AHdX2UKGgGR0BtOno3aSLZaAdNRQFoCEdAnQdoKQaJh3V9lChoBkdAcE4bp/wy7GgHTW4BaAhHQJ0HYy+HrQh1fZQoaAZHQHAeY91U2k1oB01hAWgIR0CdCHuFHrhSdX2UKGgGR0Br4Mz/IbOvaAdNQAFoCEdAnQkPMjeKsXV9lChoBkdAcMfDmr8zh2gHTTIBaAhHQJ0J93aBZp11fZQoaAZHQHFLGthd+odoB00mAWgIR0CdCtELH+6zdX2UKGgGR0BuTFQCSzPbaAdNSQFoCEdAnQsoHHFPznV9lChoBkdAbwWA93bEgmgHTUoBaAhHQJ0LgslLOA11fZQoaAZHQHE5Y0ZWJadoB00+AWgIR0CdC6z67/XHdX2UKGgGR0BuCiV8kUsWaAdNTwFoCEdAnQ20auOjqXV9lChoBkdAcArtelbeM2gHTUoBaAhHQJ0NzfJmukl1fZQoaAZHQHEbQBcRlH1oB00zAWgIR0CdEEw71ZkkdX2UKGgGR0BB4Dl5nlGPaAdL+WgIR0CdEGwxFiKBdX2UKGgGR0BxfiGxlg+haAdNIgFoCEdAnRGDQ7cO9XV9lChoBkdAcTnYEGJN02gHTUEBaAhHQJ0SgfHPu5V1fZQoaAZHQGurGkvboKVoB01AAWgIR0CdEyw4bS7YdX2UKGgGR0A7UqSX+l0paAdNCwFoCEdAnRTljNIK+nV9lChoBkdAcSJW+oLofWgHTZABaAhHQJ0VakoF3ZB1fZQoaAZHQEcueZof0VdoB0v/aAhHQJ0Vl8ohIOJ1fZQoaAZHQHICjTnaFmFoB01uAWgIR0CdFcfXPJJYdX2UKGgGR0BvB+9vjwQUaAdNTQFoCEdAnRXT0g8r7XV9lChoBkdAcNUu2qkuYmgHTU0BaAhHQJ0WoW0qpcZ1fZQoaAZHQHJy9t2s7uFoB00fAWgIR0CdGXCDVYp2dX2UKGgGR0BtHsRtgrpaaAdNVQFoCEdAnRl9kSVW0nV9lChoBkdAcA5pAlfJFWgHTTgBaAhHQJ0abO6d1+11fZQoaAZHQG2xc8La24NoB02KAWgIR0CdGvBK+SKWdX2UKGgGR0BtImTPjXFtaAdNmQFoCEdAnRu3fVI7NnV9lChoBkdAb/Jst03fh2gHTVABaAhHQJ0dk77sOXp1fZQoaAZHQGsNVvddmg9oB01aAWgIR0CdHeMoMKCydX2UKGgGR0BwpTzBhx5taAdNPAFoCEdAnR6GxhUip3V9lChoBkdAC4Hh0hePaWgHTR8BaAhHQJ0fYBEKE391fZQoaAZHQG/Z2e6I3zdoB01pAWgIR0CdH1wcYIjXdX2UKGgGR0Bti3VoYekpaAdNYQFoCEdAnTFqtknTiXV9lChoBkdAb3vschkiEGgHTSoBaAhHQJ0xhbqyGBZ1fZQoaAZHQG7G9joZAIJoB01NAWgIR0CdMmzoUzsQdX2UKGgGR0BrGyEpRXOoaAdNOQFoCEdAnTKIraufVnV9lChoBkdAbeNl5nlGPWgHTXkBaAhHQJ0zpoysS011fZQoaAZHQHGIeMERradoB01xAWgIR0CdM6clPacqdX2UKGgGR0BNOFHz6JqJaAdL/2gIR0CdNBZwGW2PdX2UKGgGR0BrVV21UlzEaAdNSQFoCEdAnTV3d9Dx9XV9lChoBkdAbP6F23azvGgHTXABaAhHQJ02np4bCJp1fZQoaAZHQHCTp+6RQrNoB01HAWgIR0CdNqilzltCdX2UKGgGR0Bx4DKdQO4HaAdNUgFoCEdAnTernoxHoXV9lChoBkdAcJS0AtFrmGgHTSYBaAhHQJ034vtdAxB1fZQoaAZHQHFzOh0yP+5oB000AWgIR0CdOI6S1Vo6dX2UKGgGR0Bsmf6fra/RaAdNQgFoCEdAnTqIHLRrrXV9lChoBkdAbPq4aP0ZnGgHTWkBaAhHQJ07HSQYDT11fZQoaAZHQG0CamoBJZpoB006AWgIR0CdO07btZ3cdX2UKGgGR0BxtqGM4tHyaAdNOgFoCEdAnTtpRXOnmHV9lChoBkdAa6ZXlKbrkmgHTS0BaAhHQJ08DaakRBh1fZQoaAZHQG+Fu3UhFE1oB01CAWgIR0CdPJjvd/KAdX2UKGgGR0BwAjSKFZgYaAdNhAFoCEdAnTzDZg5R0nV9lChoBkdAcDDLvCuU2WgHTSQBaAhHQJ086TpxFRZ1fZQoaAZHQHIlkTHsC1ZoB00vAWgIR0CdPTUMG5c1dX2UKGgGR0BwWqNWEK3NaAdNQgFoCEdAnUAPMGHHm3V9lChoBkdAceJdzXBgu2gHTSkBaAhHQJ1ArDziCJ51fZQoaAZHQG0jQeNkvsZoB02BAWgIR0CdQMdQfp2VdX2UKGgGR0BwamHk92X+aAdNRQFoCEdAnUOkZiuuBHV9lChoBkdAcGCmig00nGgHTXIBaAhHQJ1ELfO2RaJ1fZQoaAZHQG82oC2c8T1oB01eAWgIR0CdRTiEQGwBdX2UKGgGR0BvPrUqhDgJaAdNPAFoCEdAnUhwFPi1iXV9lChoBkdAcdRJg9eQdWgHTTkBaAhHQJ1IuM5wOvt1fZQoaAZHQG+Orl/6O5toB01YAWgIR0CdSR/WlMyrdX2UKGgGR0Bqw9UADJU6aAdNNwFoCEdAnUmsstkFwHV9lChoBkdAcHTezD4xlGgHTVEBaAhHQJ1Jytq59Vp1fZQoaAZHQG+IjZlFtsNoB02lAWgIR0CdSiyM1jy4dX2UKGgGR0BqQykTHsC1aAdNPAFoCEdAnUrhWcSXdHV9lChoBkdAb0G7iADq4mgHTToBaAhHQJ1LAT9KmKt1fZQoaAZHQHItC75Ec81oB008AWgIR0CdS2QyhzvJdX2UKGgGR0Bx7NUvPC2uaAdNdAFoCEdAnUxRlg+hXnV9lChoBkdAbtWuq3mV7mgHTScBaAhHQJ1M+t5le4V1fZQoaAZHQHFaC/47A+JoB004AWgIR0CdTb5imVJMdX2UKGgGR0BLWOZssQNDaAdL+mgIR0CdTcZowmE5dX2UKGgGR0By7hwtJ4B4aAdNPwFoCEdAnU39mcvugHV9lChoBkdAcHVBTn7pFGgHTU4BaAhHQJ1Qfm0VrRB1fZQoaAZHQG+zYtQKrrBoB005AWgIR0CdUHzwMH8kdX2UKGgGR0Bw76gh8pkPaAdNMwFoCEdAnVJFWsA/93V9lChoBkdAcUeiAUcn3WgHTTsBaAhHQJ1SwX7+DOF1fZQoaAZHQHCdaxLTQVtoB008AWgIR0CdU+BGx2SudX2UKGgGR0By0ztY0VJuaAdNZgFoCEdAnVSwJXyRS3V9lChoBkdAblmGDcuanmgHTV0BaAhHQJ1U3JRwZO11ZS4="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 256,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e68497ed47996e418518508664a61d504c4e0b8f5311261f463be13efcbba234
3
+ size 88362
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7be326dab40d066cf393f547ac28e2c82107755becc8f26fea07bdb565f5c2af
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.5.0+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.26.4
7
+ - Cloudpickle: 3.1.0
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (163 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 255.7893234586881, "std_reward": 22.2230832731047, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-11-09T15:03:42.277409"}