ianisdev commited on
Commit
452256c
·
verified ·
1 Parent(s): 67c8f8e

Upload folder using huggingface_hub

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
README.MD ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - vqvae
5
+ - image-generation
6
+ - unsupervised-learning
7
+ - pytorch
8
+ - cifar10
9
+ - generative-model
10
+ datasets:
11
+ - cifar10
12
+ library_name: pytorch
13
+ model-index:
14
+ - name: VQ-VAE-CIFAR10
15
+ results: []
16
+ ---
17
+
18
+ # VQ-VAE for CIFAR-10
19
+
20
+ This is a **Vector Quantized Variational Autoencoder (VQ-VAE)** trained on the CIFAR-10 dataset using PyTorch. It is part of an image augmentation pipeline for generative modeling and unsupervised learning research.
21
+
22
+ ## 🧠 Model Details
23
+
24
+ - **Model Type**: VQ-VAE
25
+ - **Dataset**: CIFAR-10
26
+ - **Epochs**: 35
27
+ - **Latent Space**: Discrete (quantized vectors)
28
+ - **Input Size**: 64×64
29
+ - **Reconstruction Loss**: MSE-based
30
+ - **Implementation**: Custom PyTorch, 3-layer Conv Encoder/Decoder
31
+ - **FID Score**: **71.11**
32
+ - **Loss Curve**: [`loss_curve.png`](./loss_curve.png)
33
+
34
+ > This model was trained to learn a compact representation of CIFAR-10 images via vector quantization and used for downstream data augmentation.
35
+
36
+ ## 📁 Files
37
+
38
+ - `generator.pt`: Trained VQ-VAE model weights.
39
+ - `loss_curve.png`: Visual plot of training loss across 35 epochs.
40
+ - `fid_score.json`: Stored Fréchet Inception Distance (FID) evaluation result.
41
+ - `fid_real/` and `fid_fake/`: 1000 real and generated samples used for FID computation.
42
+
43
+ ## 📦 How to Use
44
+
45
+ ```python
46
+ import torch
47
+ from models.vqvae.model import VQVAE
48
+
49
+ model = VQVAE()
50
+ model.load_state_dict(torch.load("generator.pt", map_location="cpu"))
51
+ model.eval()
fid_fake/00000.png ADDED
fid_fake/00001.png ADDED
fid_fake/00002.png ADDED
fid_fake/00003.png ADDED
fid_fake/00004.png ADDED
fid_fake/00005.png ADDED
fid_fake/00006.png ADDED
fid_fake/00007.png ADDED
fid_fake/00008.png ADDED
fid_fake/00009.png ADDED
fid_fake/00010.png ADDED
fid_fake/00011.png ADDED
fid_fake/00012.png ADDED
fid_fake/00013.png ADDED
fid_fake/00014.png ADDED
fid_fake/00015.png ADDED
fid_fake/00016.png ADDED
fid_fake/00017.png ADDED
fid_fake/00018.png ADDED
fid_fake/00019.png ADDED
fid_fake/00020.png ADDED
fid_fake/00021.png ADDED
fid_fake/00022.png ADDED
fid_fake/00023.png ADDED
fid_fake/00024.png ADDED
fid_fake/00025.png ADDED
fid_fake/00026.png ADDED
fid_fake/00027.png ADDED
fid_fake/00028.png ADDED
fid_fake/00029.png ADDED
fid_fake/00030.png ADDED
fid_fake/00031.png ADDED
fid_fake/00032.png ADDED
fid_fake/00033.png ADDED
fid_fake/00034.png ADDED
fid_fake/00035.png ADDED
fid_fake/00036.png ADDED
fid_fake/00037.png ADDED
fid_fake/00038.png ADDED
fid_fake/00039.png ADDED
fid_fake/00040.png ADDED
fid_fake/00041.png ADDED
fid_fake/00042.png ADDED
fid_fake/00043.png ADDED
fid_fake/00044.png ADDED
fid_fake/00045.png ADDED
fid_fake/00046.png ADDED
fid_fake/00047.png ADDED
fid_fake/00048.png ADDED