--- license: mit tags: - vqvae - image-generation - unsupervised-learning - pytorch - cifar10 - generative-model datasets: - cifar10 library_name: pytorch model-index: - name: VQ-VAE-CIFAR10 results: [] --- # VQ-VAE for CIFAR-10 This is a **Vector Quantized Variational Autoencoder (VQ-VAE)** trained on the CIFAR-10 dataset using PyTorch. It is part of an image augmentation pipeline for generative modeling and unsupervised learning research. ## 🧠 Model Details - **Model Type**: VQ-VAE - **Dataset**: CIFAR-10 - **Epochs**: 35 - **Latent Space**: Discrete (quantized vectors) - **Input Size**: 64×64 - **Reconstruction Loss**: MSE-based - **Implementation**: Custom PyTorch, 3-layer Conv Encoder/Decoder - **FID Score**: **71.11** - **Loss Curve**: [`loss_curve.png`](./loss_curve.png) > This model was trained to learn a compact representation of CIFAR-10 images via vector quantization and used for downstream data augmentation. ## 📁 Files - `generator.pt`: Trained VQ-VAE model weights. - `loss_curve.png`: Visual plot of training loss across 35 epochs. - `fid_score.json`: Stored Fréchet Inception Distance (FID) evaluation result. - `fid_real/` and `fid_fake/`: 1000 real and generated samples used for FID computation. ## 📦 How to Use ```python import torch from models.vqvae.model import VQVAE model = VQVAE() model.load_state_dict(torch.load("generator.pt", map_location="cpu")) model.eval()