from transformers import PretrainedConfig from typing import List, Optional, Tuple class PneumothoraxConfig(PretrainedConfig): model_type = "pneumothorax" def __init__( self, backbone: str = "tf_efficientnetv2_s", feature_dim: int = 256, seg_dropout: float = 0.1, cls_dropout: float = 0.1, seg_num_classes: int = 1, cls_num_classes: int = 1, in_chans: int = 1, img_size: Tuple[int, int] = (512, 512), # height, width decoder_n_blocks: int = 5, decoder_channels: List[int] = [256, 128, 64, 32, 16], encoder_channels: List[int] = [24, 48, 64, 160, 256], decoder_center_block: bool = False, decoder_norm_layer: str = "bn", decoder_attention_type: Optional[str] = None, **kwargs, ): self.backbone = backbone self.feature_dim = feature_dim self.seg_dropout = seg_dropout self.cls_dropout = cls_dropout self.seg_num_classes = seg_num_classes self.cls_num_classes = cls_num_classes self.in_chans = in_chans self.img_size = img_size self.decoder_n_blocks = decoder_n_blocks self.decoder_channels = decoder_channels self.encoder_channels = encoder_channels self.decoder_center_block = decoder_center_block self.decoder_norm_layer = decoder_norm_layer self.decoder_attention_type = decoder_attention_type super().__init__(**kwargs)