resume: false device: cuda use_amp: false seed: 0 dataset_repo_id: iantc104/rpl_peg_in_hole video_backend: pyav training: offline_steps: 100000 num_workers: 4 batch_size: 8 eval_freq: 20000 log_freq: 200 save_checkpoint: true save_freq: 20000 online_steps: 0 online_rollout_n_episodes: 1 online_rollout_batch_size: 1 online_steps_between_rollouts: 1 online_sampling_ratio: 0.5 online_env_seed: null online_buffer_capacity: null online_buffer_seed_size: 0 do_online_rollout_async: false image_transforms: enable: false max_num_transforms: 3 random_order: false brightness: weight: 1 min_max: - 0.8 - 1.2 contrast: weight: 1 min_max: - 0.8 - 1.2 saturation: weight: 1 min_max: - 0.5 - 1.5 hue: weight: 1 min_max: - -0.05 - 0.05 sharpness: weight: 1 min_max: - 0.8 - 1.2 lr: 1.0e-05 lr_backbone: 1.0e-05 weight_decay: 0.0001 grad_clip_norm: 10 delta_timestamps: action: - 0.0 - 0.02 - 0.04 - 0.06 - 0.08 - 0.1 - 0.12 - 0.14 - 0.16 - 0.18 - 0.2 - 0.22 - 0.24 - 0.26 - 0.28 - 0.3 - 0.32 - 0.34 - 0.36 - 0.38 - 0.4 - 0.42 - 0.44 - 0.46 - 0.48 - 0.5 - 0.52 - 0.54 - 0.56 - 0.58 - 0.6 - 0.62 - 0.64 - 0.66 - 0.68 - 0.7 - 0.72 - 0.74 - 0.76 - 0.78 - 0.8 - 0.82 - 0.84 - 0.86 - 0.88 - 0.9 - 0.92 - 0.94 - 0.96 - 0.98 eval: n_episodes: 50 batch_size: 10 use_async_envs: false wandb: enable: true disable_artifact: false project: rpl notes: '' fps: 50 env: name: rpl task: PegInHoleEnv-v0 state_dim: 16 action_dim: 10 fps: ${fps} episode_length: 300 gym: render_mode: rgb_array override_dataset_stats: observation.images.scene: mean: - - - 0.485 - - - 0.456 - - - 0.406 std: - - - 0.229 - - - 0.224 - - - 0.225 observation.images.wrist: mean: - - - 0.485 - - - 0.456 - - - 0.406 std: - - - 0.229 - - - 0.224 - - - 0.225 policy: name: act n_obs_steps: 1 chunk_size: 50 n_action_steps: 50 input_shapes: observation.images.scene: - 3 - 480 - 640 observation.images.wrist: - 3 - 480 - 640 observation.state: - ${env.state_dim} output_shapes: action: - ${env.action_dim} input_normalization_modes: observation.images.scene: mean_std observation.images.wrist: mean_std observation.state: mean_std output_normalization_modes: action: mean_std vision_backbone: resnet18 pretrained_backbone_weights: ResNet18_Weights.IMAGENET1K_V1 replace_final_stride_with_dilation: false pre_norm: false dim_model: 512 n_heads: 8 dim_feedforward: 3200 feedforward_activation: relu n_encoder_layers: 4 n_decoder_layers: 1 use_vae: true latent_dim: 32 n_vae_encoder_layers: 4 temporal_ensemble_coeff: null dropout: 0.1 kl_weight: 10.0