Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,52 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model:
|
4 |
+
- ibm-granite/granite-3.3-8b-instruct
|
5 |
+
---
|
6 |
+
|
7 |
+
# Micro-G3.3-8B-Instruct-1B
|
8 |
+
|
9 |
+
**Model Summary:**
|
10 |
+
Micro-G3.3-8B-Instruct-1B is a 1-billion parameter micro language model fine-tuned for reasoning and instruction-following capabilities. Built on top of Granite-3.3-8B-Instruct, with only 3 hidden layers, this model is trained to maximize performance and hardware compatibility at minimal compute cost.
|
11 |
+
|
12 |
+
**Generation:**
|
13 |
+
This is a simple example of how to use Micro-G3.3-8B-Instruct-1B model.
|
14 |
+
|
15 |
+
Install the following libraries:
|
16 |
+
|
17 |
+
```shell
|
18 |
+
pip install torch torchvision torchaudio
|
19 |
+
pip install accelerate
|
20 |
+
pip install transformers
|
21 |
+
```
|
22 |
+
Then, copy the snippet from the section that is relevant for your use case.
|
23 |
+
|
24 |
+
```python
|
25 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, set_seed
|
26 |
+
import torch
|
27 |
+
|
28 |
+
model_path="ibm-ai-platform/micro-g3.3-8b-instruct-1b"
|
29 |
+
device="cuda"
|
30 |
+
model = AutoModelForCausalLM.from_pretrained(
|
31 |
+
model_path,
|
32 |
+
device_map=device,
|
33 |
+
torch_dtype=torch.bfloat16,
|
34 |
+
)
|
35 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
36 |
+
model_path
|
37 |
+
)
|
38 |
+
|
39 |
+
conv = [{"role": "user", "content":"What is your favorite color?"}]
|
40 |
+
|
41 |
+
input_ids = tokenizer.apply_chat_template(conv, return_tensors="pt", thinking=True, return_dict=True, add_generation_prompt=True).to(device)
|
42 |
+
|
43 |
+
set_seed(42)
|
44 |
+
output = model.generate(
|
45 |
+
**input_ids,
|
46 |
+
max_new_tokens=8,
|
47 |
+
)
|
48 |
+
|
49 |
+
prediction = tokenizer.decode(output[0, input_ids["input_ids"].shape[1]:], skip_special_tokens=True)
|
50 |
+
print(prediction)
|
51 |
+
```
|
52 |
+
|