bhatta1 commited on
Commit
22af6e4
·
verified ·
1 Parent(s): b16966d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +1 -17
README.md CHANGED
@@ -17,23 +17,7 @@ This model is part of the [GneissWeb](https://huggingface.co/datasets/ibm-granit
17
 
18
  **Intended Use**:
19
 
20
- This model is trained on 350B tokens of English FineWeb V1.1.0 data and is not instruction-tuned or safety aligned. It is important to note that the primary intended use case for this model is to compare its performance with other models trained under similar conditions, with the goal of comparing pre-training datasets. These other models include
21
-
22
- [GneissWeb.7B_ablation_model_on_350B_FineWeb.Edu.seed1](https://huggingface.co/ibm-granite/GneissWeb.7B_ablation_model_on_350B_FineWeb.Edu.seed1)
23
-
24
- [GneissWeb.7B_ablation_model_on_350B_GneissWeb.seed1](https://huggingface.co/ibm-granite/GneissWeb.7B_ablation_model_on_350B_GneissWeb.seed1)
25
-
26
- [GneissWeb.7B_ablation_model_on_350B_FineWeb.Edu.seed2](https://huggingface.co/ibm-granite/GneissWeb.7B_ablation_model_on_350B_FineWeb.Edu.seed2)
27
-
28
- [GneissWeb.7B_ablation_model_on_350B_GneissWeb.seed2](https://huggingface.co/ibm-granite/GneissWeb.7B_ablation_model_on_350B_GneissWeb.seed2)
29
-
30
- [GneissWeb.7B_ablation_model_on_350B_FineWeb.Edu.seed3](https://huggingface.co/ibm-granite/GneissWeb.7B_ablation_model_on_350B_FineWeb.Edu.seed3)
31
-
32
- [GneissWeb.7B_ablation_model_on_350B_GneissWeb.seed3](https://huggingface.co/ibm-granite/GneissWeb.7B_ablation_model_on_350B_GneissWeb.seed3)
33
-
34
- [GneissWeb.7B_ablation_model_on_350B_FineWeb.seed1](https://huggingface.co/ibm-granite/GneissWeb.7B_ablation_model_on_350B_FineWeb.seed1)
35
-
36
- [GneissWeb.7B_ablation_model_on_350B_FineWeb.seed3](https://huggingface.co/ibm-granite/GneissWeb.7B_ablation_model_on_350B_FineWeb.seed3)
37
 
38
 
39
  **Generation**:
 
17
 
18
  **Intended Use**:
19
 
20
+ This model is trained on 350B tokens of English FineWeb V1.1.0 data and is not instruction-tuned or safety aligned. It is important to note that the primary intended use case for this model is to compare its performance with other models trained under similar conditions, with the goal of comparing pre-training datasets. These other models are mentioned [here](https://huggingface.co/datasets/ibm-granite/GneissWeb)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21
 
22
 
23
  **Generation**: