File size: 10,916 Bytes
842533b 64765e9 842533b 64765e9 f1785a4 64765e9 842533b 64765e9 2ab68a5 64765e9 2ab68a5 64765e9 2ab68a5 64765e9 2ab68a5 64765e9 2ab68a5 64765e9 2ab68a5 64765e9 2ab68a5 64765e9 2ab68a5 64765e9 2ab68a5 64765e9 2ab68a5 64765e9 2ab68a5 64765e9 2ab68a5 64765e9 2ab68a5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 |
---
pipeline_tag: text-generation
inference: true
# widget:
# - text: 'Question: Please write a function in Python that performs bubble sort.\n\nAnswer:'
# example_title: Bubble sort
# group: Python
license: apache-2.0
datasets:
# Mentionded in paper
- codeparrot/github-code-clean
- bigcode/starcoderdata
# - Stackexchange
# - CommonCrawl
- open-web-math/open-web-math
- math-ai/StackMathQA
# - Arxiv
# - Wikipedia
# - conceptofmind/FLAN_2022 # Original link is broken, we used IBM's filtered version | Phase 2
- nvidia/HelpSteer
metrics:
- code_eval
library_name: transformers
tags:
- code
model-index:
- name: granite-3b-code-base
results:
- task:
type: text-generation
dataset:
type: openai_humaneval # https://arxiv.org/pdf/2107.03374
name: HumanEval
metrics:
- name: pass@1
type: pass@1
value: 34.1
veriefied: false # Check
- task:
type: text-generation
dataset:
type: evalplus/humanevalplus # https://arxiv.org/pdf/2305.01210 https://github.com/evalplus/evalplus
name: HumanEval+
metrics:
- name: pass@1
type: pass@1
value: 29.9
veriefied: false # Check
- task:
type: text-generation
dataset:
type: mbpp # https://arxiv.org/abs/2108.07732
name: MBPP
metrics:
- name: pass@1
type: pass@1
value: 36.0
veriefied: false # Check
- task:
type: text-generation
dataset:
type: evalplus/mbppplus #
name: MBPP+
metrics:
- name: pass@1
type: pass@1
value: 45.1
veriefied: false # Check
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalSynthesis(Python)
metrics:
- name: pass@1
type: pass@1
value: 36.0
veriefied: false # Check
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalSynthesis(JavaScript)
metrics:
- name: pass@1
type: pass@1
value: 37.2
veriefied: false # Check
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalSynthesis(Java)
metrics:
- name: pass@1
type: pass@1
value: 40.9
veriefied: false # Check
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalSynthesis(Go)
metrics:
- name: pass@1
type: pass@1
value: 26.2
veriefied: false # Check
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalSynthesis(C++)
metrics:
- name: pass@1
type: pass@1
value: 35.4
veriefied: false # Check
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalSynthesis(Rust)
metrics:
- name: pass@1
type: pass@1
value: 22.0
veriefied: false # Check
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalExplain(Python)
metrics:
- name: pass@1
type: pass@1
value: 25.0
veriefied: false # Check
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalExplain(JavaScript)
metrics:
- name: pass@1
type: pass@1
value: 18.9
veriefied: false # Check
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalExplain(Java)
metrics:
- name: pass@1
type: pass@1
value: 29.9
veriefied: false # Check
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalExplain(Go)
metrics:
- name: pass@1
type: pass@1
value: 17.1
veriefied: false # Check
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalExplain(C++)
metrics:
- name: pass@1
type: pass@1
value: 26.8
veriefied: false # Check
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalExplain(Rust)
metrics:
- name: pass@1
type: pass@1
value: 14.0
veriefied: false # Check
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalFix(Python)
metrics:
- name: pass@1
type: pass@1
value: 18.3
veriefied: false # Check
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalFix(JavaScript)
metrics:
- name: pass@1
type: pass@1
value: 23.2
veriefied: false # Check
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalFix(Java)
metrics:
- name: pass@1
type: pass@1
value: 29.9
veriefied: false # Check
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalFix(Go)
metrics:
- name: pass@1
type: pass@1
value: 24.4
veriefied: false # Check
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalFix(C++)
metrics:
- name: pass@1
type: pass@1
value: 16.5
veriefied: false # Check
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalFix(Rust)
metrics:
- name: pass@1
type: pass@1
value: 3.7
veriefied: false # Check
---
<!--
Granite 3B Code Base
Model Summary: few sentences like starcoder
- Developers:
- GH repository:
- Release date:
- Lincense:
Usage
Intended use
Generation
Fill-in-the-middle
Training Data
Infrastructure
Limitations
Citation
-->
# Granite 3B Code Base
<!-- ![granite](https://github.com/ibm-granite/granite-code-models/blob/main/figures/granite.png) -->
## Model Summary
**Granite 3B Code Base** is a decoder-only code model designed for code generative tasks (e.g., code generation, code explanation, code fixing). It was trained from scratch on 4 trillion tokens sourced from 116 programming languages, ensuring a comprehensive understanding of programming languages and syntax.
- **Developers:** IBM Research
- **GitHub Repository:** [ibm-granite/granite-code-models](https://github.com/ibm-granite/granite-code-models)
- **Paper:** [Granite Code Models: A Family of Open Foundation Models
for Code Intelligence](https://)
- **Release Date**: May 6th, 2024
- **License:** [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0) license.
## Usage
### Intended use
Prominent enterprise use cases of LLMs in software engineering productivity include code generation, code explanation, code fixing, generating unit tests, generating documentation, addressing technical debt issues, vulnerability detection, code translation, and more. All Granite Code Base models, including the **3B parameters model**, are able to handle these tasks as they were trained on a large amount of code data from 116 programming languages.
### Generation
This is a simple example of how to use Granite Code Base 3B model.
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
device = "cuda" # or "cpu"
model_path = "ibm-granite/granite-3b-code-base"
tokenizer = AutoTokenizer.from_pretrained(model_path)
# drop device_map if running on CPU
model = AutoModelForCausalLM.from_pretrained(model_path, device_map=device)
model.eval()
# change input text as desired
input_text = "def generate():"
# tokenize the text
input_tokens = tokenizer(input_text, return_tensors="pt")
# transfer tokenized inputs to the device
for i in input_tokens:
input_tokens[i] = input_tokens[i].to(device)
# generate output tokens
output = model.generate(**input_tokens)
# decode output tokens into text
output = tokenizer.batch_decode(output)
# loop over the batch to print, in this example the batch size is 1
for i in output:
print(output)
```
## Training Data
- **Data Collection and Filtering:** Pretraining code data is sourced from a combination of publicly available datasets (e.g., [GitHub Code Clean](https://huggingface.co/datasets/codeparrot/github-code-clean), [Starcoder data](https://huggingface.co/datasets/bigcode/starcoderdata)), and additional public code repositories and issues from GitHub. We filter raw data to retain a list of 116 programming languages. After language filtering, we also filter out low-quality code.
- **Exact and Fuzzy Deduplication:** We adopt an aggressive deduplication strategy that includes both exact and fuzzy deduplication to remove documents having (near) identical code content.
- **HAP, PII, Malware Filtering:** We apply a HAP content filter that reduces models' likelihood of generating hateful, abusive, or profane language. We also make sure to redact Personally Identifiable Information (PII) by replacing PII content (e.g., names, email addresses, keys, passwords) with corresponding tokens (e.g., ⟨NAME⟩, ⟨EMAIL⟩, ⟨KEY⟩, ⟨PASSWORD⟩). Moreover, we scan all datasets using [ClamAV](https://www.clamav.net/) to identify and remove instances of malware in the source code.
- **Natural Language Datasets:** In addition to collecting code data for model training, we curate several publicly available high-quality natural language datasets to improve models' proficiency in language understanding and mathematical reasoning. Unlike the code data, we do not deduplicate these datasets.
## Infrastructure
We train the Granite Code models using two of IBM's super computing clusters, namely Vela and Blue Vela, both outfitted with NVIDIA A100 and H100 GPUs respectively. These clusters provide a scalable and efficient infrastructure for training our models over thousands of GPUs.
## Limitations
Large Language Models are often prone to generating incorrect information, typically referred to as hallucinations. **Granite 3B Code Base** model is not the exception in this regard. Even though this model is suited for code-related tasks as it is trained on source code from 116 programming languages, the generated code is not guaranteed to work as intended. It can be inefficient and can also contain bugs or exploits. Moreover, Granite Code Base models are **NOT** instruction-following models. Thus, commands like *"Write a function that computes the square root"* may not work well. The model is best treated as a code completion or code infilling model.
## Citation
```
@misc{granite-models,
author = {author 1, author2, ...},
title = {Granite Code Large Language Models: IBM Foundation Models for Code},
journal = {},
volume = {},
year = {2024},
url = {https://arxiv.org/abs/0000.00000},
}
```
|