Prithvi-EO-1.0-100M / prithvi_mae.py
blumenstiel's picture
Updated inference code
7bfe9ea
# Copyright (c) IBM Corp. 2024. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# --------------------------------------------------------
# References:
# timm: https://github.com/rwightman/pytorch-image-models/tree/master/timm
# transformers: https://github.com/huggingface/transformers
# --------------------------------------------------------
from functools import partial
from typing import List, Tuple
import logging
import numpy as np
import torch
import torch.nn as nn
from einops import rearrange
from timm.layers import to_2tuple
from timm.models.vision_transformer import Block
def get_3d_sincos_pos_embed(embed_dim, grid_size, add_cls_token=False):
"""
Create 3D sin/cos positional embeddings.
Args:
embed_dim (int):
Embedding dimension.
grid_size (tuple[int, int, int] | list[int]):
The grid depth, height and width.
add_cls_token (bool, *optional*, defaults to False):
Whether or not to add a classification (CLS) token.
Returns:
(`torch.FloatTensor` of shape (grid_size[0]*grid_size[1]*grid_size[2], embed_dim) or
(1+grid_size[0]*grid_size[1]*grid_size[2], embed_dim): the position embeddings (with or without cls token)
"""
assert embed_dim % 16 == 0
t_size, h_size, w_size = grid_size
w_embed_dim = embed_dim // 16 * 6
h_embed_dim = embed_dim // 16 * 6
t_embed_dim = embed_dim // 16 * 4
w_pos_embed = get_1d_sincos_pos_embed_from_grid(w_embed_dim, np.arange(w_size))
h_pos_embed = get_1d_sincos_pos_embed_from_grid(h_embed_dim, np.arange(h_size))
t_pos_embed = get_1d_sincos_pos_embed_from_grid(t_embed_dim, np.arange(t_size))
w_pos_embed = np.tile(w_pos_embed, (t_size * h_size, 1))
h_pos_embed = np.tile(np.repeat(h_pos_embed, w_size, axis=0), (t_size, 1))
t_pos_embed = np.repeat(t_pos_embed, h_size * w_size, axis=0)
pos_embed = np.concatenate((w_pos_embed, h_pos_embed, t_pos_embed), axis=1)
if add_cls_token:
pos_embed = np.concatenate([np.zeros([1, embed_dim]), pos_embed], axis=0)
return pos_embed
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
"""
embed_dim: output dimension for each position pos: a list of positions to be encoded: size (M,) out: (M, D)
"""
if embed_dim % 2 != 0:
raise ValueError("embed_dim must be even")
omega = np.arange(embed_dim // 2, dtype=float)
omega /= embed_dim / 2.0
omega = 1.0 / 10000**omega # (D/2,)
pos = pos.reshape(-1) # (M,)
out = np.einsum("m,d->md", pos, omega) # (M, D/2), outer product
emb_sin = np.sin(out) # (M, D/2)
emb_cos = np.cos(out) # (M, D/2)
emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
return emb
def _get_1d_sincos_embed_from_grid_torch(embed_dim: int, pos: torch.Tensor):
""" This is the torch version of *get_1d_sincos_pos_embed_from_grid()*. However,
it was modified to cast omega values to pos.dtype which must be float (and not int as in
regular positional embeddings). This was required in order to allow for native FSDP mixed
precision support: modify omega to appropriate dtype (pos carries the correct float dtype),
instead of manually forcing float32.
embed_dim: output dimension for each position
pos: a list of positions to be encoded: size (M,) - must be float dtype!
out: (M, D)
"""
assert embed_dim % 2 == 0
assert pos.dtype in [torch.float32, torch.float16, torch.bfloat16]
omega = torch.arange(embed_dim // 2, dtype=pos.dtype).to(pos.device)
omega /= embed_dim / 2.0
omega = 1.0 / 10000**omega # (D/2,)
pos = pos.reshape(-1) # (M,)
out = torch.einsum("m,d->md", pos, omega) # (M, D/2), outer product
emb_sin = torch.sin(out) # (M, D/2)
emb_cos = torch.cos(out) # (M, D/2)
emb = torch.cat([emb_sin, emb_cos], dim=1) # (M, D)
return emb
def _init_weights(module):
"""Initialize the weights"""
if isinstance(module, nn.Linear):
nn.init.xavier_uniform_(module.weight)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
class PatchEmbed(nn.Module):
"""3D version of timm.models.vision_transformer.PatchEmbed"""
def __init__(
self,
input_size: Tuple[int, int, int] = (1, 224, 224),
patch_size: Tuple[int, int, int] = (1, 16, 16),
in_chans: int = 3,
embed_dim: int = 768,
norm_layer: nn.Module | None = None,
flatten: bool = True,
bias: bool = True,
):
super().__init__()
self.input_size = input_size
self.patch_size = patch_size
self.grid_size = [s // p for s, p in zip(self.input_size, self.patch_size)]
self.num_patches = self.grid_size[0] * self.grid_size[1] * self.grid_size[2]
self.flatten = flatten
self.proj = nn.Conv3d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size, bias=bias)
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
def forward(self, x):
B, C, T, H, W = x.shape
if T / self.patch_size[0] % 1 or H / self.patch_size[1] % 1 or W / self.patch_size[2] % 1:
logging.warning(f"Input {x.shape[-3:]} is not divisible by patch size {self.patch_size}."
f"The border will be ignored, add backbone_padding for pixel-wise tasks.")
x = self.proj(x)
if self.flatten:
x = x.flatten(2).transpose(1, 2) # B,C,T,H,W -> B,C,L -> B,L,C
x = self.norm(x)
return x
class TemporalEncoder(nn.Module):
def __init__(self, embed_dim: int, trainable_scale: bool = False):
super().__init__()
self.embed_dim = embed_dim
self.year_embed_dim = embed_dim // 2
self.julian_day_embed_dim = embed_dim - self.year_embed_dim
# If trainable, initialize scale with small number
if trainable_scale:
self.scale = nn.Parameter(torch.full((1,), 0.1))
else:
self.register_buffer('scale', torch.ones(1))
def forward(self, temporal_coords: torch.Tensor, tokens_per_frame: int | None = None):
"""
temporal_coords: year and day-of-year info with shape (B, T, 2).
tokens_per_frame: number of tokens for each frame in the sample. If provided, embeddings will be
repeated over T dimension, and final shape is (B, T*tokens_per_frame, embed_dim).
"""
shape = temporal_coords.shape[:2] + (-1,) # B, T, -1
year = _get_1d_sincos_embed_from_grid_torch(
self.year_embed_dim, temporal_coords[:, :, 0].flatten()).reshape(shape)
julian_day = _get_1d_sincos_embed_from_grid_torch(
self.julian_day_embed_dim, temporal_coords[:, :, 1].flatten()).reshape(shape)
embedding = self.scale * torch.cat([year, julian_day], dim=-1)
if tokens_per_frame is not None:
embedding = torch.repeat_interleave(embedding, tokens_per_frame, dim=1)
return embedding # B, T*tokens_per_frame, embed_dim
class LocationEncoder(nn.Module):
def __init__(self, embed_dim: int, trainable_scale: bool = False):
super().__init__()
self.embed_dim = embed_dim
self.lat_embed_dim = embed_dim // 2
self.lon_embed_dim = embed_dim - self.lat_embed_dim
# If trainable, initialize scale with small number
if trainable_scale:
self.scale = nn.Parameter(torch.full((1,), 0.1))
else:
self.register_buffer('scale', torch.ones(1))
def forward(self, location_coords: torch.Tensor):
"""
location_coords: lat and lon info with shape (B, 2).
"""
shape = location_coords.shape[:1] + (1, -1) # B, 1, -1
lat = _get_1d_sincos_embed_from_grid_torch(
self.lat_embed_dim, location_coords[:, 0].flatten()).reshape(shape)
lon = _get_1d_sincos_embed_from_grid_torch(
self.lon_embed_dim, location_coords[:, 1].flatten()).reshape(shape)
embedding = self.scale * torch.cat([lat, lon], dim=-1)
return embedding # B, 1, embed_dim
class PrithviViT(nn.Module):
""" Prithvi ViT Encoder"""
def __init__(self,
img_size: int | Tuple[int, int] = 224,
patch_size: int | Tuple[int, int, int] = (1, 16, 16),
num_frames: int = 1,
in_chans: int = 3,
embed_dim: int = 1024,
depth: int = 24,
num_heads: int = 16,
mlp_ratio: float = 4.,
norm_layer: nn.Module = partial(torch.nn.LayerNorm, eps=1e-6),
coords_encoding: List[str] | None = None,
coords_scale_learn: bool = False,
encoder_only: bool = True, # needed for timm
** kwargs,
):
super().__init__()
self.feature_info = []
self.encoder_only = encoder_only
self.in_chans = in_chans
self.num_frames = num_frames
self.embed_dim = embed_dim
self.img_size = to_2tuple(img_size)
if isinstance(patch_size, int):
patch_size = (1, patch_size, patch_size)
# 3D patch embedding
self.patch_embed = PatchEmbed(
input_size=(num_frames,) + self.img_size,
patch_size=patch_size,
in_chans=in_chans,
embed_dim=embed_dim,
)
# Optional temporal and location embedding
coords_encoding = coords_encoding or []
self.temporal_encoding = 'time' in coords_encoding
self.location_encoding = 'location' in coords_encoding
if self.temporal_encoding:
assert patch_size[0] == 1, f"With temporal encoding, patch_size[0] must be 1, received {patch_size[0]}"
self.temporal_embed_enc = TemporalEncoder(embed_dim, coords_scale_learn)
if self.location_encoding:
self.location_embed_enc = LocationEncoder(embed_dim, coords_scale_learn)
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
self.register_buffer("pos_embed", torch.zeros(1, self.patch_embed.num_patches + 1, embed_dim))
# Transformer layers
self.blocks = []
for i in range(depth):
self.blocks.append(Block(embed_dim, num_heads, mlp_ratio, qkv_bias=True, norm_layer=norm_layer))
self.feature_info.append(
{"num_chs": embed_dim * self.patch_embed.patch_size[0], "reduction": 1, "module": f"blocks.{i}"}
)
self.blocks = nn.ModuleList(self.blocks)
self.norm = norm_layer(embed_dim)
self.initialize_weights()
def initialize_weights(self):
# initialize (and freeze) position embeddings by sin-cos embedding
pos_embed = get_3d_sincos_pos_embed(
self.pos_embed.shape[-1], self.patch_embed.grid_size, add_cls_token=True
)
self.pos_embed.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0))
# initialize patch_embeddings like nn.Linear (instead of nn.Conv2d)
w = self.patch_embed.proj.weight.data
torch.nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
# timm's trunc_normal_(std=.02) is effectively normal_(std=0.02) as cutoff is too big (2.)
torch.nn.init.normal_(self.cls_token, std=0.02)
self.apply(_init_weights)
def random_masking(self, sequence, mask_ratio, noise=None):
"""
Perform per-sample random masking by per-sample shuffling. Per-sample shuffling is done by argsort random
noise.
Args:
sequence (`torch.FloatTensor` of shape `(batch_size, sequence_length, dim)`)
mask_ratio (float): mask ratio to use.
noise (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*) which is
mainly used for testing purposes to control randomness and maintain the reproducibility
"""
batch_size, seq_length, dim = sequence.shape
len_keep = int(seq_length * (1 - mask_ratio))
if noise is None:
noise = torch.rand(batch_size, seq_length, device=sequence.device) # noise in [0, 1]
# sort noise for each sample
ids_shuffle = torch.argsort(noise, dim=1).to(sequence.device) # ascend: small is keep, large is remove
ids_restore = torch.argsort(ids_shuffle, dim=1).to(sequence.device)
# keep the first subset
ids_keep = ids_shuffle[:, :len_keep]
sequence_unmasked = torch.gather(sequence, dim=1, index=ids_keep.unsqueeze(-1).repeat(1, 1, dim))
# generate the binary mask: 0 is keep, 1 is remove
mask = torch.ones([batch_size, seq_length], device=sequence.device)
mask[:, :len_keep] = 0
# unshuffle to get the binary mask
mask = torch.gather(mask, dim=1, index=ids_restore)
return sequence_unmasked, mask, ids_restore
def _get_pos_embed(self, x):
t, h, w = x.shape[-3:]
pos_embed = torch.from_numpy(get_3d_sincos_pos_embed(
self.embed_dim,
(
t // self.patch_embed.patch_size[0],
h // self.patch_embed.patch_size[1],
w // self.patch_embed.patch_size[2],
),
add_cls_token=True,
)).float().unsqueeze(0).to(x)
return pos_embed
def forward(
self, x: torch.Tensor,
temporal_coords: None | torch.Tensor = None,
location_coords: None | torch.Tensor = None,
mask_ratio=0.75
):
if x.shape[-3:] != self.patch_embed.input_size:
# changed input size
pos_embed = self._get_pos_embed(x)
else:
pos_embed = self.pos_embed
# embed patches
x = self.patch_embed(x)
# add pos embed w/o cls token
x = x + pos_embed[:, 1:, :]
if self.temporal_encoding:
num_tokens_per_frame = x.shape[1] // self.num_frames
temporal_encoding = self.temporal_embed_enc(temporal_coords, num_tokens_per_frame)
x = x + temporal_encoding
if self.location_encoding:
location_encoding = self.location_embed_enc(location_coords)
x = x + location_encoding
# masking: length -> length * mask_ratio
x, mask, ids_restore = self.random_masking(x, mask_ratio)
# append cls token
cls_token = self.cls_token + pos_embed[:, :1, :]
cls_tokens = cls_token.expand(x.shape[0], -1, -1)
x = torch.cat((cls_tokens, x), dim=1)
# apply Transformer blocks
for block in self.blocks:
x = block(x)
x = self.norm(x)
return x, mask, ids_restore
def forward_features(
self,
x: torch.Tensor,
temporal_coords: None | torch.Tensor = None,
location_coords: None | torch.Tensor = None,
) -> list[torch.Tensor]:
if len(x.shape) == 4 and self.patch_embed.input_size[0] == 1:
# add time dim
x = x.unsqueeze(2)
if x.shape[-3:] != self.patch_embed.input_size:
pos_embed = self._get_pos_embed(x)
else:
pos_embed = self.pos_embed
# embed patches
x = self.patch_embed(x)
# add pos embed w/o cls token
x = x + pos_embed[:, 1:, :]
if self.temporal_encoding:
num_tokens_per_frame = x.shape[1] // self.patch_embed.num_frames
temporal_encoding = self.temporal_embed_enc(temporal_coords, num_tokens_per_frame)
x = x + temporal_encoding
if self.location_encoding:
location_encoding = self.location_embed_enc(location_coords)
x = x + location_encoding
# append cls token
cls_token = self.cls_token + pos_embed[:, :1, :]
cls_tokens = cls_token.expand(x.shape[0], -1, -1)
x = torch.cat((cls_tokens, x), dim=1)
# apply Transformer blocks
out = []
for block in self.blocks:
x = block(x)
out.append(x.clone())
x = self.norm(x)
out[-1] = x
return out
def prepare_features_for_image_model(self, features: list[torch.Tensor]) -> list[torch.Tensor]:
out = []
effective_time_dim = self.patch_embed.input_size[0] // self.patch_embed.patch_size[0]
for x in features:
x_no_token = x[:, 1:, :]
number_of_tokens = x_no_token.shape[1]
tokens_per_timestep = number_of_tokens // effective_time_dim
h = int(np.sqrt(tokens_per_timestep))
encoded = rearrange(
x_no_token,
"batch (t h w) e -> batch (t e) h w",
e=self.embed_dim,
t=effective_time_dim,
h=h,
)
out.append(encoded)
return out
class MAEDecoder(nn.Module):
""" Transformer Decoder used in the Prithvi MAE"""
def __init__(self,
patch_size: int | Tuple[int, int, int] = (1, 16, 16),
grid_size: List[int] | Tuple[int, int, int] = (3, 14, 14),
in_chans: int = 3,
encoder_embed_dim: int = 1024,
decoder_embed_dim: int = 512,
depth: int = 8,
num_heads: int = 16,
mlp_ratio: float = 4.,
norm_layer: nn.Module = nn.LayerNorm,
coords_encoding: List[str] | None = None,
coords_scale_learn: bool = False,
):
super().__init__()
self.decoder_embed = nn.Linear(encoder_embed_dim, decoder_embed_dim, bias=True)
self.decoder_embed_dim = decoder_embed_dim
self.grid_size = grid_size
if isinstance(patch_size, int):
patch_size = (1, patch_size, patch_size)
self.patch_size = patch_size
self.num_frames = self.grid_size[0] * patch_size[0]
num_patches = self.grid_size[0] * self.grid_size[1] * self.grid_size[2]
# Optional temporal and location embedding
coords_encoding = coords_encoding or []
self.temporal_encoding = 'time' in coords_encoding
self.location_encoding = 'location' in coords_encoding
if self.temporal_encoding:
self.temporal_embed_dec = TemporalEncoder(decoder_embed_dim, coords_scale_learn)
if self.location_encoding:
self.location_embed_dec = LocationEncoder(decoder_embed_dim, coords_scale_learn)
self.mask_token = nn.Parameter(torch.zeros(1, 1, decoder_embed_dim))
self.register_buffer("decoder_pos_embed", torch.zeros(1, num_patches + 1, decoder_embed_dim))
self.decoder_blocks = nn.ModuleList(
[Block(decoder_embed_dim, num_heads, mlp_ratio, qkv_bias=True, norm_layer=norm_layer) for _ in range(depth)]
)
self.decoder_norm = norm_layer(decoder_embed_dim)
self.decoder_pred = nn.Linear(decoder_embed_dim,
patch_size[0] * patch_size[1] * patch_size[2] * in_chans,
bias=True)
self.initialize_weights()
def initialize_weights(self):
# initialize (and freeze) position embeddings by sin-cos embedding
decoder_pos_embed = get_3d_sincos_pos_embed(
self.decoder_pos_embed.shape[-1], self.grid_size, add_cls_token=True
)
self.decoder_pos_embed.data.copy_(torch.from_numpy(decoder_pos_embed).float().unsqueeze(0))
# timm's trunc_normal_(std=.02) is effectively normal_(std=0.02) as cutoff is too big (2.)
torch.nn.init.normal_(self.mask_token, std=0.02)
self.apply(_init_weights)
def forward(
self,
hidden_states: torch.Tensor,
ids_restore: torch.Tensor,
temporal_coords: None | torch.Tensor = None,
location_coords: None | torch.Tensor = None,
input_size: list[int] = None,
):
# embed tokens
x = self.decoder_embed(hidden_states)
t, h, w = input_size[-3:]
decoder_pos_embed = torch.from_numpy(
get_3d_sincos_pos_embed(
self.decoder_embed_dim,
(
t // self.patch_size[0],
h // self.patch_size[1],
w // self.patch_size[2],
),
add_cls_token=True,
)
).to(x)
# append mask tokens to sequence
mask_tokens = self.mask_token.repeat(x.shape[0], ids_restore.shape[1] + 1 - x.shape[1], 1)
x_ = torch.cat([x[:, 1:, :], mask_tokens], dim=1) # no cls token
# unshuffle
x_ = torch.gather(x_, dim=1, index=ids_restore.unsqueeze(-1).repeat(1, 1, x.shape[2]).to(x_.device))
x = torch.cat([x[:, :1, :], x_], dim=1) # append cls token
# add pos embed
x = x + decoder_pos_embed
# remove cls token
x_ = x[:, 1:, :]
if self.temporal_encoding:
num_tokens_per_frame = x_.shape[1] // self.num_frames
temporal_encoding = self.temporal_embed_dec(temporal_coords, num_tokens_per_frame)
# Add temporal encoding w/o cls token
x_ = x_ + temporal_encoding
if self.location_encoding:
location_encoding = self.location_embed_dec(location_coords)
# Add location encoding w/o cls token
x_ = x_ + location_encoding
# append cls token
x = torch.cat([x[:, :1, :], x_], dim=1)
# apply Transformer layers (blocks)
for block in self.decoder_blocks:
x = block(x)
x = self.decoder_norm(x)
# predictor projection
pred = self.decoder_pred(x)
# remove cls token
pred = pred[:, 1:, :]
return pred
class PrithviMAE(nn.Module):
""" Prithvi Masked Autoencoder"""
def __init__(self,
img_size: int | Tuple[int, int] = 224,
patch_size: int | Tuple[int, int, int] = (1, 16, 16),
num_frames: int = 3,
in_chans: int = 3,
embed_dim: int = 1024,
depth: int = 24,
num_heads: int = 16,
decoder_embed_dim: int = 512,
decoder_depth: int = 8,
decoder_num_heads: int = 16,
mlp_ratio: float = 4.,
norm_layer: nn.Module = partial(torch.nn.LayerNorm, eps=1e-6),
norm_pix_loss: bool = False,
coords_encoding: List[str] | None = None,
coords_scale_learn: bool = False,
encoder_only: bool = False,
**kwargs,
):
super().__init__()
self.encoder = PrithviViT(
img_size=img_size,
num_frames=num_frames,
patch_size=patch_size,
in_chans=in_chans,
embed_dim=embed_dim,
depth=depth,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
norm_layer=norm_layer,
coords_encoding=coords_encoding,
coords_scale_learn=coords_scale_learn,
)
self.encoder_only = encoder_only
if not encoder_only:
self.decoder = MAEDecoder(
patch_size=patch_size,
grid_size=self.encoder.patch_embed.grid_size,
in_chans=in_chans,
encoder_embed_dim=embed_dim,
decoder_embed_dim=decoder_embed_dim,
depth=decoder_depth,
num_heads=decoder_num_heads,
mlp_ratio=mlp_ratio,
norm_layer=norm_layer,
coords_encoding=coords_encoding,
coords_scale_learn=coords_scale_learn,
)
else:
self.decoder = nn.Identity()
self.norm_pix_loss = norm_pix_loss
def patchify(self, pixel_values):
"""
Args:
pixel_values (torch.FloatTensor of shape `(batch_size, num_channels, time, height, width)`):
Pixel values.
Returns:
torch.FloatTensor of shape `(batch_size, num_patches, patch_size[0]*patch_size[1]*patch_size[2] * num_channels)`:
Patchified pixel values.
"""
patch_size_t, patch_size_h, patch_size_w = self.encoder.patch_embed.patch_size
num_channels = self.encoder.in_chans
# patchify
patchified_pixel_values = rearrange(pixel_values, 'b c (t s) (h p) (w q) -> b (t h w) (s p q c)',
c=num_channels, s=patch_size_t, p=patch_size_h, q=patch_size_w)
return patchified_pixel_values
def unpatchify(self, patchified_pixel_values, image_size: Tuple[int, int] | None = None):
"""
Args:
patchified_pixel_values (`torch.FloatTensor` of shape
`(batch_size, num_patches, patch_size[0]*patch_size[1]*patch_size[2] * num_channels)`:
Patchified pixel values.
image_size (`Tuple[int, int]`, *optional*):
Original image size.
Returns:
`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`:
Pixel values.
"""
patch_size_t, patch_size_h, patch_size_w = self.encoder.patch_embed.patch_size
image_size = to_2tuple(image_size) if image_size is not None else self.encoder.img_size
original_height, original_width = image_size
num_patches_h = original_height // patch_size_h
num_patches_w = original_width // patch_size_w
num_channels = self.encoder.in_chans
pixel_values = rearrange(patchified_pixel_values, 'b (t h w) (s p q c) -> b c (t s) (h p) (w q)',
c=num_channels, h=num_patches_h, w=num_patches_w,
s=patch_size_t, p=patch_size_h, q=patch_size_w)
return pixel_values
def forward_loss(self, pixel_values, pred, mask):
"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, time, height, width)`):
Pixel values.
pred (`torch.FloatTensor` of shape `(batch_size, num_patches, patch_size[0]*patch_size[1]*patch_size[2] * num_channels)`:
Predicted pixel values.
mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
Tensor indicating which patches are masked (1) and which are not (0).
Returns:
`torch.FloatTensor`: Pixel reconstruction loss.
"""
target = self.patchify(pixel_values)
if self.norm_pix_loss:
mean = target.mean(dim=-1, keepdim=True)
var = target.var(dim=-1, keepdim=True)
target = (target - mean) / (var + 1.0e-6) ** 0.5
loss = (pred - target) ** 2
loss = loss.mean(dim=-1) # [N, L], mean loss per patch
loss = (loss * mask).sum() / mask.sum() # mean loss on removed patches
return loss
def forward(
self,
pixel_values: torch.Tensor,
temporal_coords: None | torch.Tensor = None,
location_coords: None | torch.Tensor = None,
mask_ratio: float = 0.75
):
if len(pixel_values.shape) == 4 and self.encoder.patch_embed.input_size[0] == 1:
# add time dim
pixel_values = pixel_values.unsqueeze(2)
latent, mask, ids_restore = self.encoder(pixel_values, temporal_coords, location_coords, mask_ratio)
pred = self.decoder(latent, ids_restore, temporal_coords, location_coords, input_size=pixel_values.shape)
loss = self.forward_loss(pixel_values, pred, mask)
return loss, pred, mask
def forward_features(
self,
x: torch.Tensor,
temporal_coords: None | torch.Tensor = None,
location_coords: None | torch.Tensor = None,
) -> List[torch.Tensor]:
return self.encoder.forward_features(x, temporal_coords, location_coords)