File size: 16,246 Bytes
e25d381 c6d1dbd e25d381 c6d1dbd e25d381 40a835d e25d381 92ae9e8 e25d381 92ae9e8 e25d381 92ae9e8 e25d381 92ae9e8 e25d381 f4421c9 e25d381 f4421c9 e25d381 c6d1dbd e25d381 c6d1dbd e25d381 92ae9e8 e25d381 9ffe66d e25d381 9ffe66d e25d381 92ae9e8 e25d381 40a835d e25d381 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 |
import argparse
import functools
import os
from typing import List, Union
import re
import datetime
import numpy as np
import pandas as pd
import rasterio
import torch
import yaml
from einops import rearrange
from functools import partial
from prithvi_mae import PrithviMAE
NO_DATA = -9999
NO_DATA_FLOAT = 0.0001
OFFSET = 0
PERCENTILE = 99.9
def process_channel_group(orig_img, new_img, channels, mean, std):
"""Process *orig_img* and *new_img* for RGB visualization. Each band is rescaled back to the
original range using *data_mean* and *data_std* and then lowest and highest percentiles are
removed to enhance contrast. Data is rescaled to (0, 1) range and stacked channels_first.
Args:
orig_img: torch.Tensor representing original image (reference) with shape = (bands, H, W).
new_img: torch.Tensor representing image with shape = (bands, H, W).
channels: list of indices representing RGB channels.
mean: list of mean values for each band.
std: list of std values for each band.
Returns:
torch.Tensor with shape (num_channels, height, width) for original image
torch.Tensor with shape (num_channels, height, width) for the other image
"""
mean = torch.tensor(np.asarray(mean)[:, None, None]) # C H W
std = torch.tensor(np.asarray(std)[:, None, None])
orig_img = orig_img[channels, ...]
valid_mask = torch.ones_like(orig_img, dtype=torch.bool)
valid_mask[orig_img == NO_DATA_FLOAT] = False
# Back to original data range
orig_img = (orig_img * std[channels]) + mean[channels]
new_img = (new_img[channels, ...] * std[channels]) + mean[channels]
# Rescale (enhancing contrast)
max_value = max(3000, np.percentile(orig_img[valid_mask], PERCENTILE))
min_value = OFFSET
orig_img = torch.clamp((orig_img - min_value) / (max_value - min_value), 0, 1)
new_img = torch.clamp((new_img - min_value) / (max_value - min_value), 0, 1)
# No data as zeros
orig_img[~valid_mask] = 0
new_img[~valid_mask] = 0
return orig_img, new_img
def read_geotiff(file_path: str):
"""Read all bands from *file_path* and return image + meta info.
Args:
file_path: path to image file.
Returns:
np.ndarray with shape (bands, height, width)
meta info dict
"""
with rasterio.open(file_path) as src:
img = src.read()
meta = src.meta
try:
coords = src.lnglat()
except:
# Cannot read coords
coords = None
return img, meta, coords
def save_geotiff(image, output_path: str, meta: dict):
"""Save multi-band image in Geotiff file.
Args:
image: np.ndarray with shape (bands, height, width)
output_path: path where to save the image
meta: dict with meta info.
"""
with rasterio.open(output_path, "w", **meta) as dest:
for i in range(image.shape[0]):
dest.write(image[i, :, :], i + 1)
return
def _convert_np_uint8(float_image: torch.Tensor):
image = float_image.numpy() * 255.0
image = image.astype(dtype=np.uint8)
return image
def load_example(
file_paths: List[str],
mean: List[float],
std: List[float],
indices: Union[list[int], None] = None,
):
"""Build an input example by loading images in *file_paths*.
Args:
file_paths: list of file paths .
mean: list containing mean values for each band in the images in *file_paths*.
std: list containing std values for each band in the images in *file_paths*.
Returns:
np.array containing created example
list of meta info for each image in *file_paths*
"""
imgs = []
metas = []
temporal_coords = []
location_coords = []
for file in file_paths:
img, meta, coords = read_geotiff(file)
# Rescaling (don't normalize on nodata)
img = np.moveaxis(img, 0, -1) # channels last for rescaling
if indices is not None:
img = img[..., indices]
img = np.where(img == NO_DATA, NO_DATA_FLOAT, (img - mean) / std)
imgs.append(img)
metas.append(meta)
if coords is not None:
location_coords.append(coords)
try:
match = re.search(r'(\d{7,8}T\d{6})', file)
if match:
year = int(match.group(1)[:4])
julian_day = match.group(1).split('T')[0][4:]
if len(julian_day) == 3:
julian_day = int(julian_day)
else:
julian_day = datetime.datetime.strptime(julian_day, '%m%d').timetuple().tm_yday
temporal_coords.append([year, julian_day])
except Exception as e:
print(f'Could not extract timestamp for {file} ({e})')
imgs = np.stack(imgs, axis=0) # num_frames, H, W, C
imgs = np.moveaxis(imgs, -1, 0).astype("float32") # C, num_frames, H, W
imgs = np.expand_dims(imgs, axis=0) # add batch di
return imgs, temporal_coords, location_coords, metas
def run_model(
model: torch.nn.Module,
input_data: torch.Tensor,
temporal_coords: None | torch.Tensor,
location_coords: None | torch.Tensor,
mask_ratio: float,
device: torch.device,
):
"""Run *model* with *input_data* and create images from output tokens (mask, reconstructed + visible).
Args:
model: MAE model to run.
input_data: torch.Tensor with shape (B, C, T, H, W).
mask_ratio: mask ratio to use.
device: device where model should run.
Returns:
3 torch.Tensor with shape (B, C, T, H, W).
"""
with torch.no_grad():
x = input_data.to(device)
_, pred, mask = model(x, temporal_coords, location_coords, mask_ratio)
# Create mask and prediction images (un-patchify)
mask_img = (
model.unpatchify(mask.unsqueeze(-1).repeat(1, 1, pred.shape[-1])).detach().cpu()
)
pred_img = model.unpatchify(pred).detach().cpu()
# Mix visible and predicted patches
rec_img = input_data.clone()
rec_img[mask_img == 1] = pred_img[
mask_img == 1
] # binary mask: 0 is keep, 1 is remove
# Switch zeros/ones in mask images so masked patches appear darker in plots (better visualization)
mask_img = (~(mask_img.to(torch.bool))).to(torch.float)
return rec_img, mask_img
def save_rgb_imgs(
input_img, rec_img, mask_img, channels, mean, std, output_dir, meta_data
):
"""Wrapper function to save Geotiff images (original, reconstructed, masked) per timestamp.
Args:
input_img: input torch.Tensor with shape (C, T, H, W).
rec_img: reconstructed torch.Tensor with shape (C, T, H, W).
mask_img: mask torch.Tensor with shape (C, T, H, W).
channels: list of indices representing RGB channels.
mean: list of mean values for each band.
std: list of std values for each band.
output_dir: directory where to save outputs.
meta_data: list of dicts with geotiff meta info.
"""
for t in range(input_img.shape[1]):
rgb_orig, rgb_pred = process_channel_group(
orig_img=input_img[:, t, :, :],
new_img=rec_img[:, t, :, :],
channels=channels,
mean=mean,
std=std,
)
rgb_mask = mask_img[channels, t, :, :] * rgb_orig
# Saving images
save_geotiff(
image=_convert_np_uint8(rgb_orig),
output_path=os.path.join(output_dir, f"original_rgb_t{t}.tiff"),
meta=meta_data[t],
)
save_geotiff(
image=_convert_np_uint8(rgb_pred),
output_path=os.path.join(output_dir, f"predicted_rgb_t{t}.tiff"),
meta=meta_data[t],
)
save_geotiff(
image=_convert_np_uint8(rgb_mask),
output_path=os.path.join(output_dir, f"masked_rgb_t{t}.tiff"),
meta=meta_data[t],
)
def save_imgs(rec_img, mask_img, mean, std, output_dir, meta_data):
"""Wrapper function to save Geotiff images (reconstructed, mask) per timestamp.
Args:
rec_img: reconstructed torch.Tensor with shape (C, T, H, W).
mask_img: mask torch.Tensor with shape (C, T, H, W).
mean: list of mean values for each band.
std: list of std values for each band.
output_dir: directory where to save outputs.
meta_data: list of dicts with geotiff meta info.
"""
mean = torch.tensor(np.asarray(mean)[:, None, None]) # C H W
std = torch.tensor(np.asarray(std)[:, None, None])
for t in range(rec_img.shape[1]):
# Back to original data range
rec_img_t = ((rec_img[:, t, :, :] * std) + mean).to(torch.int16)
mask_img_t = mask_img[:, t, :, :].to(torch.int16)
# Saving images
save_geotiff(
image=rec_img_t,
output_path=os.path.join(output_dir, f"predicted_t{t}.tiff"),
meta=meta_data[t],
)
save_geotiff(
image=mask_img_t,
output_path=os.path.join(output_dir, f"mask_t{t}.tiff"),
meta=meta_data[t],
)
def main(
data_files: List[str],
config_path: str,
checkpoint: str,
output_dir: str,
rgb_outputs: bool,
mask_ratio: float = None,
input_indices: list[int] = None,
):
os.makedirs(output_dir, exist_ok=True)
# Get parameters --------
import json
with open(config_path, "r") as f:
config = yaml.safe_load(f)['pretrained_cfg']
batch_size = 1
bands = config['bands']
num_frames = len(data_files)
mean = config['mean']
std = config['std']
coords_encoding = config['coords_encoding']
img_size = config['img_size']
mask_ratio = mask_ratio or config['mask_ratio']
print(
f"\nTreating {len(data_files)} files as {len(data_files)} time steps from the same location\n"
)
if len(data_files) != 4:
print(
"The original model was trained for four time steps. \nResults with different numbers of time steps may vary"
)
if torch.cuda.is_available():
device = torch.device("cuda")
else:
device = torch.device("cpu")
print(f"Using {device} device.\n")
# Loading data ---------------------------------------------------------------------------------
input_data, temporal_coords, location_coords, meta_data = load_example(
file_paths=data_files, indices=input_indices, mean=mean, std=std
)
if len(temporal_coords) != num_frames and 'time' in coords_encoding:
coords_encoding.pop('time')
if not len(location_coords) and 'location' in coords_encoding:
coords_encoding.pop('location')
# Create model and load checkpoint -------------------------------------------------------------
config.update(
coords_encoding=coords_encoding,
num_frames=num_frames,
in_chans=len(bands),
)
model = PrithviMAE(**config)
total_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
print(f"\n--> Model has {total_params:,} parameters.\n")
model.to(device)
state_dict = torch.load(checkpoint, map_location=device)
# discard fixed pos_embedding weight
for k in list(state_dict.keys()):
if 'pos_embed' in k:
del state_dict[k]
model.load_state_dict(state_dict, strict=False)
print(f"Loaded checkpoint from {checkpoint}")
# Running model --------------------------------------------------------------------------------
model.eval()
channels = [bands.index(b) for b in ["B04", "B03", "B02"]] # BGR -> RGB
# Reflect pad if not divisible by img_size
original_h, original_w = input_data.shape[-2:]
pad_h = img_size - (original_h % img_size)
pad_w = img_size - (original_w % img_size)
input_data = np.pad(
input_data, ((0, 0), (0, 0), (0, 0), (0, pad_h), (0, pad_w)), mode="reflect"
)
# Build sliding window
batch = torch.tensor(input_data, device="cpu")
windows = batch.unfold(3, img_size, img_size).unfold(4, img_size, img_size)
h1, w1 = windows.shape[3:5]
windows = rearrange(
windows, "b c t h1 w1 h w -> (b h1 w1) c t h w", h=img_size, w=img_size
)
# Split into batches if number of windows > batch_size
num_batches = windows.shape[0] // batch_size if windows.shape[0] > batch_size else 1
windows = torch.tensor_split(windows, num_batches, dim=0)
temporal_coords = torch.Tensor(temporal_coords, device=device).unsqueeze(0)
location_coords = torch.Tensor(location_coords[0], device=device).unsqueeze(0)
# Run model
rec_imgs = []
mask_imgs = []
for x in windows:
rec_img, mask_img = run_model(model, x, temporal_coords, location_coords, mask_ratio, device)
rec_imgs.append(rec_img)
mask_imgs.append(mask_img)
rec_imgs = torch.concat(rec_imgs, dim=0)
mask_imgs = torch.concat(mask_imgs, dim=0)
# Build images from patches
rec_imgs = rearrange(
rec_imgs,
"(b h1 w1) c t h w -> b c t (h1 h) (w1 w)",
h=img_size,
w=img_size,
b=1,
c=len(bands),
t=num_frames,
h1=h1,
w1=w1,
)
mask_imgs = rearrange(
mask_imgs,
"(b h1 w1) c t h w -> b c t (h1 h) (w1 w)",
h=img_size,
w=img_size,
b=1,
c=len(bands),
t=num_frames,
h1=h1,
w1=w1,
)
# Cut padded images back to original size
rec_imgs_full = rec_imgs[..., :original_h, :original_w]
mask_imgs_full = mask_imgs[..., :original_h, :original_w]
batch_full = batch[..., :original_h, :original_w]
# Build output images
if rgb_outputs:
for d in meta_data:
d.update(count=3, dtype="uint8", compress="lzw", nodata=0)
save_rgb_imgs(
batch_full[0, ...],
rec_imgs_full[0, ...],
mask_imgs_full[0, ...],
channels,
mean,
std,
output_dir,
meta_data,
)
else:
for d in meta_data:
d.update(compress="lzw", nodata=0)
save_imgs(
rec_imgs_full[0, ...],
mask_imgs_full[0, ...],
mean,
std,
output_dir,
meta_data,
)
print("Done!")
if __name__ == "__main__":
parser = argparse.ArgumentParser("MAE run inference", add_help=False)
parser.add_argument(
"--data_files",
type=str,
nargs="+",
default=["examples/Mexico_HLS.S30.T13REM.2018026T173609.v2.0_cropped.tif",
"examples/Mexico_HLS.S30.T13REM.2018106T172859.v2.0_cropped.tif",
"examples/Mexico_HLS.S30.T13REM.2018201T172901.v2.0_cropped.tif",
"examples/Mexico_HLS.S30.T13REM.2018266T173029.v2.0_cropped.tif",
],
help="Path to the data files. Assumes multi-band files.",
)
parser.add_argument(
"--config_path",
"-c",
type=str,
default="config.json",
help="Path to json file containing model training parameters.",
)
parser.add_argument(
"--checkpoint",
type=str,
default="Prithvi_EO_V2_300M_TL.pt",
help="Path to a checkpoint file to load from.",
)
parser.add_argument(
"--output_dir",
type=str,
default="output",
help="Path to the directory where to save outputs.",
)
parser.add_argument(
"--mask_ratio",
default=0.75,
type=float,
help="Masking ratio (percentage of removed patches). "
"If None (default) use same value used for pretraining.",
)
parser.add_argument(
"--input_indices",
default=None,
type=int,
nargs="+",
help="0-based indices of channels to be selected from the input. By default takes all.",
)
parser.add_argument(
"--rgb_outputs",
action="store_true",
help="If present, output files will only contain RGB channels. "
"Otherwise, all bands will be saved.",
)
args = parser.parse_args()
main(**vars(args))
|