|
import argparse |
|
import functools |
|
import os |
|
from typing import List, Union |
|
import re |
|
import datetime |
|
import numpy as np |
|
import pandas as pd |
|
import rasterio |
|
import torch |
|
import yaml |
|
from einops import rearrange |
|
|
|
from functools import partial |
|
from prithvi_mae import PrithviMAE |
|
|
|
NO_DATA = -9999 |
|
NO_DATA_FLOAT = 0.0001 |
|
OFFSET = 0 |
|
PERCENTILE = 99.9 |
|
|
|
|
|
def process_channel_group(orig_img, new_img, channels, mean, std): |
|
"""Process *orig_img* and *new_img* for RGB visualization. Each band is rescaled back to the |
|
original range using *data_mean* and *data_std* and then lowest and highest percentiles are |
|
removed to enhance contrast. Data is rescaled to (0, 1) range and stacked channels_first. |
|
|
|
Args: |
|
orig_img: torch.Tensor representing original image (reference) with shape = (bands, H, W). |
|
new_img: torch.Tensor representing image with shape = (bands, H, W). |
|
channels: list of indices representing RGB channels. |
|
mean: list of mean values for each band. |
|
std: list of std values for each band. |
|
|
|
Returns: |
|
torch.Tensor with shape (num_channels, height, width) for original image |
|
torch.Tensor with shape (num_channels, height, width) for the other image |
|
""" |
|
|
|
mean = torch.tensor(np.asarray(mean)[:, None, None]) |
|
std = torch.tensor(np.asarray(std)[:, None, None]) |
|
orig_img = orig_img[channels, ...] |
|
valid_mask = torch.ones_like(orig_img, dtype=torch.bool) |
|
valid_mask[orig_img == NO_DATA_FLOAT] = False |
|
|
|
|
|
orig_img = (orig_img * std[channels]) + mean[channels] |
|
new_img = (new_img[channels, ...] * std[channels]) + mean[channels] |
|
|
|
|
|
max_value = max(3000, np.percentile(orig_img[valid_mask], PERCENTILE)) |
|
min_value = OFFSET |
|
|
|
orig_img = torch.clamp((orig_img - min_value) / (max_value - min_value), 0, 1) |
|
new_img = torch.clamp((new_img - min_value) / (max_value - min_value), 0, 1) |
|
|
|
|
|
orig_img[~valid_mask] = 0 |
|
new_img[~valid_mask] = 0 |
|
|
|
return orig_img, new_img |
|
|
|
|
|
def read_geotiff(file_path: str): |
|
"""Read all bands from *file_path* and return image + meta info. |
|
|
|
Args: |
|
file_path: path to image file. |
|
|
|
Returns: |
|
np.ndarray with shape (bands, height, width) |
|
meta info dict |
|
""" |
|
|
|
with rasterio.open(file_path) as src: |
|
img = src.read() |
|
meta = src.meta |
|
coords = src.lnglat() |
|
|
|
return img, meta, coords |
|
|
|
|
|
def save_geotiff(image, output_path: str, meta: dict): |
|
"""Save multi-band image in Geotiff file. |
|
|
|
Args: |
|
image: np.ndarray with shape (bands, height, width) |
|
output_path: path where to save the image |
|
meta: dict with meta info. |
|
""" |
|
|
|
with rasterio.open(output_path, "w", **meta) as dest: |
|
for i in range(image.shape[0]): |
|
dest.write(image[i, :, :], i + 1) |
|
|
|
return |
|
|
|
|
|
def _convert_np_uint8(float_image: torch.Tensor): |
|
image = float_image.numpy() * 255.0 |
|
image = image.astype(dtype=np.uint8) |
|
|
|
return image |
|
|
|
|
|
def load_example( |
|
file_paths: List[str], |
|
mean: List[float], |
|
std: List[float], |
|
indices: Union[list[int], None] = None, |
|
): |
|
"""Build an input example by loading images in *file_paths*. |
|
|
|
Args: |
|
file_paths: list of file paths . |
|
mean: list containing mean values for each band in the images in *file_paths*. |
|
std: list containing std values for each band in the images in *file_paths*. |
|
|
|
Returns: |
|
np.array containing created example |
|
list of meta info for each image in *file_paths* |
|
""" |
|
|
|
imgs = [] |
|
metas = [] |
|
temporal_coords = [] |
|
location_coords = [] |
|
|
|
for file in file_paths: |
|
img, meta, coords = read_geotiff(file) |
|
|
|
|
|
img = np.moveaxis(img, 0, -1) |
|
if indices is not None: |
|
img = img[..., indices] |
|
img = np.where(img == NO_DATA, NO_DATA_FLOAT, (img - mean) / std) |
|
|
|
imgs.append(img) |
|
metas.append(meta) |
|
location_coords.append(coords) |
|
|
|
try: |
|
match = re.search(r'(\d{7}T\d{6})', file) |
|
if match: |
|
year = int(match.group(1)[:4]) |
|
julian_day = match.group(1).split('T')[0][4:] |
|
if len(julian_day) == 3: |
|
julian_day = int(julian_day) |
|
else: |
|
julian_day = datetime.datetime.strptime(julian_day, '%m%d').timetuple().tm_yday |
|
temporal_coords.append([year, julian_day]) |
|
except Exception as e: |
|
print(f'Could not extract timestamp for {file} ({e})') |
|
|
|
imgs = np.stack(imgs, axis=0) |
|
imgs = np.moveaxis(imgs, -1, 0).astype("float32") |
|
imgs = np.expand_dims(imgs, axis=0) |
|
|
|
return imgs, temporal_coords, location_coords, metas |
|
|
|
|
|
def run_model( |
|
model: torch.nn.Module, |
|
input_data: torch.Tensor, |
|
temporal_coords: None | torch.Tensor, |
|
location_coords: None | torch.Tensor, |
|
mask_ratio: float, |
|
device: torch.device, |
|
): |
|
"""Run *model* with *input_data* and create images from output tokens (mask, reconstructed + visible). |
|
|
|
Args: |
|
model: MAE model to run. |
|
input_data: torch.Tensor with shape (B, C, T, H, W). |
|
mask_ratio: mask ratio to use. |
|
device: device where model should run. |
|
|
|
Returns: |
|
3 torch.Tensor with shape (B, C, T, H, W). |
|
""" |
|
|
|
with torch.no_grad(): |
|
x = input_data.to(device) |
|
|
|
_, pred, mask = model(x, temporal_coords, location_coords, mask_ratio) |
|
|
|
|
|
mask_img = ( |
|
model.unpatchify(mask.unsqueeze(-1).repeat(1, 1, pred.shape[-1])).detach().cpu() |
|
) |
|
pred_img = model.unpatchify(pred).detach().cpu() |
|
|
|
|
|
rec_img = input_data.clone() |
|
rec_img[mask_img == 1] = pred_img[ |
|
mask_img == 1 |
|
] |
|
|
|
|
|
mask_img = (~(mask_img.to(torch.bool))).to(torch.float) |
|
|
|
return rec_img, mask_img |
|
|
|
|
|
def save_rgb_imgs( |
|
input_img, rec_img, mask_img, channels, mean, std, output_dir, meta_data |
|
): |
|
"""Wrapper function to save Geotiff images (original, reconstructed, masked) per timestamp. |
|
|
|
Args: |
|
input_img: input torch.Tensor with shape (C, T, H, W). |
|
rec_img: reconstructed torch.Tensor with shape (C, T, H, W). |
|
mask_img: mask torch.Tensor with shape (C, T, H, W). |
|
channels: list of indices representing RGB channels. |
|
mean: list of mean values for each band. |
|
std: list of std values for each band. |
|
output_dir: directory where to save outputs. |
|
meta_data: list of dicts with geotiff meta info. |
|
""" |
|
|
|
for t in range(input_img.shape[1]): |
|
rgb_orig, rgb_pred = process_channel_group( |
|
orig_img=input_img[:, t, :, :], |
|
new_img=rec_img[:, t, :, :], |
|
channels=channels, |
|
mean=mean, |
|
std=std, |
|
) |
|
|
|
rgb_mask = mask_img[channels, t, :, :] * rgb_orig |
|
|
|
|
|
|
|
save_geotiff( |
|
image=_convert_np_uint8(rgb_orig), |
|
output_path=os.path.join(output_dir, f"original_rgb_t{t}.tiff"), |
|
meta=meta_data[t], |
|
) |
|
|
|
save_geotiff( |
|
image=_convert_np_uint8(rgb_pred), |
|
output_path=os.path.join(output_dir, f"predicted_rgb_t{t}.tiff"), |
|
meta=meta_data[t], |
|
) |
|
|
|
save_geotiff( |
|
image=_convert_np_uint8(rgb_mask), |
|
output_path=os.path.join(output_dir, f"masked_rgb_t{t}.tiff"), |
|
meta=meta_data[t], |
|
) |
|
|
|
|
|
def save_imgs(rec_img, mask_img, mean, std, output_dir, meta_data): |
|
"""Wrapper function to save Geotiff images (reconstructed, mask) per timestamp. |
|
|
|
Args: |
|
rec_img: reconstructed torch.Tensor with shape (C, T, H, W). |
|
mask_img: mask torch.Tensor with shape (C, T, H, W). |
|
mean: list of mean values for each band. |
|
std: list of std values for each band. |
|
output_dir: directory where to save outputs. |
|
meta_data: list of dicts with geotiff meta info. |
|
""" |
|
|
|
mean = torch.tensor(np.asarray(mean)[:, None, None]) |
|
std = torch.tensor(np.asarray(std)[:, None, None]) |
|
|
|
for t in range(rec_img.shape[1]): |
|
|
|
rec_img_t = ((rec_img[:, t, :, :] * std) + mean).to(torch.int16) |
|
|
|
mask_img_t = mask_img[:, t, :, :].to(torch.int16) |
|
|
|
|
|
|
|
save_geotiff( |
|
image=rec_img_t, |
|
output_path=os.path.join(output_dir, f"predicted_t{t}.tiff"), |
|
meta=meta_data[t], |
|
) |
|
|
|
save_geotiff( |
|
image=mask_img_t, |
|
output_path=os.path.join(output_dir, f"mask_t{t}.tiff"), |
|
meta=meta_data[t], |
|
) |
|
|
|
|
|
def main( |
|
data_files: List[str], |
|
config_path: str, |
|
checkpoint: str, |
|
output_dir: str, |
|
rgb_outputs: bool, |
|
mask_ratio: float = None, |
|
input_indices: list[int] = None, |
|
): |
|
os.makedirs(output_dir, exist_ok=True) |
|
|
|
|
|
|
|
with open(config_path, "r") as f: |
|
config = yaml.safe_load(f) |
|
|
|
batch_size = 1 |
|
bands = config['DATA']['BANDS'] |
|
num_frames = len(data_files) |
|
mean = config['DATA']['MEAN'] |
|
std = config['DATA']['STD'] |
|
coords_encoding = config['MODEL']['COORDS_ENCODING'] |
|
img_size = config['DATA']['INPUT_SIZE'][-1] |
|
|
|
mask_ratio = mask_ratio or config['DATA']['MASK_RATIO'] |
|
|
|
print( |
|
f"\nTreating {len(data_files)} files as {len(data_files)} time steps from the same location\n" |
|
) |
|
if len(data_files) != 3: |
|
print( |
|
"The original model was trained for 3 time steps (expecting 3 files). \nResults with different numbers of timesteps may vary" |
|
) |
|
|
|
if torch.cuda.is_available(): |
|
device = torch.device("cuda") |
|
else: |
|
device = torch.device("cpu") |
|
|
|
print(f"Using {device} device.\n") |
|
|
|
|
|
|
|
input_data, temporal_coords, location_coords, meta_data = load_example( |
|
file_paths=data_files, indices=input_indices, mean=mean, std=std |
|
) |
|
|
|
if not temporal_coords and 'time' in coords_encoding: |
|
coords_encoding.pop('time') |
|
if location_coords is None and 'location' in coords_encoding: |
|
coords_encoding.pop('location') |
|
|
|
|
|
|
|
model = PrithviMAE(img_size=config['DATA']['INPUT_SIZE'][-2:], |
|
patch_size=config['MODEL']['PATCH_SIZE'], |
|
num_frames=num_frames, |
|
in_chans=len(bands), |
|
embed_dim=config['MODEL']['EMBED_DIM'], |
|
depth=config['MODEL']['DEPTH'], |
|
num_heads=config['MODEL']['NUM_HEADS'], |
|
decoder_embed_dim=config['MODEL']['DECODER_EMBED_DIM'], |
|
decoder_depth=config['MODEL']['DECODER_DEPTH'], |
|
decoder_num_heads=config['MODEL']['DECODER_NUM_HEADS'], |
|
mlp_ratio=config['MODEL']['MLP_RATIO'], |
|
norm_layer=partial(torch.nn.LayerNorm, eps=1e-6), |
|
norm_pix_loss=config['MODEL']['NORM_PIX_LOSS'], |
|
coords_encoding=coords_encoding, |
|
coords_scale_learn=config['MODEL']['COORDS_SCALE_LEARN']) |
|
|
|
total_params = sum(p.numel() for p in model.parameters() if p.requires_grad) |
|
print(f"\n--> Model has {total_params:,} parameters.\n") |
|
|
|
model.to(device) |
|
|
|
state_dict = torch.load(checkpoint, map_location=device) |
|
|
|
for k in list(state_dict.keys()): |
|
if 'pos_embed' in k: |
|
del state_dict[k] |
|
model.load_state_dict(state_dict, strict=False) |
|
print(f"Loaded checkpoint from {checkpoint}") |
|
|
|
|
|
|
|
model.eval() |
|
channels = [bands.index(b) for b in ["B04", "B03", "B02"]] |
|
|
|
|
|
original_h, original_w = input_data.shape[-2:] |
|
pad_h = img_size - (original_h % img_size) |
|
pad_w = img_size - (original_w % img_size) |
|
input_data = np.pad( |
|
input_data, ((0, 0), (0, 0), (0, 0), (0, pad_h), (0, pad_w)), mode="reflect" |
|
) |
|
|
|
|
|
batch = torch.tensor(input_data, device="cpu") |
|
windows = batch.unfold(3, img_size, img_size).unfold(4, img_size, img_size) |
|
h1, w1 = windows.shape[3:5] |
|
windows = rearrange( |
|
windows, "b c t h1 w1 h w -> (b h1 w1) c t h w", h=img_size, w=img_size |
|
) |
|
|
|
|
|
num_batches = windows.shape[0] // batch_size if windows.shape[0] > batch_size else 1 |
|
windows = torch.tensor_split(windows, num_batches, dim=0) |
|
|
|
temporal_coords = torch.Tensor(temporal_coords, device=device).unsqueeze(0) |
|
location_coords = torch.Tensor(location_coords[0], device=device).unsqueeze(0) |
|
|
|
|
|
rec_imgs = [] |
|
mask_imgs = [] |
|
for x in windows: |
|
rec_img, mask_img = run_model(model, x, temporal_coords, location_coords, mask_ratio, device) |
|
rec_imgs.append(rec_img) |
|
mask_imgs.append(mask_img) |
|
|
|
rec_imgs = torch.concat(rec_imgs, dim=0) |
|
mask_imgs = torch.concat(mask_imgs, dim=0) |
|
|
|
|
|
rec_imgs = rearrange( |
|
rec_imgs, |
|
"(b h1 w1) c t h w -> b c t (h1 h) (w1 w)", |
|
h=img_size, |
|
w=img_size, |
|
b=1, |
|
c=len(bands), |
|
t=num_frames, |
|
h1=h1, |
|
w1=w1, |
|
) |
|
mask_imgs = rearrange( |
|
mask_imgs, |
|
"(b h1 w1) c t h w -> b c t (h1 h) (w1 w)", |
|
h=img_size, |
|
w=img_size, |
|
b=1, |
|
c=len(bands), |
|
t=num_frames, |
|
h1=h1, |
|
w1=w1, |
|
) |
|
|
|
|
|
rec_imgs_full = rec_imgs[..., :original_h, :original_w] |
|
mask_imgs_full = mask_imgs[..., :original_h, :original_w] |
|
batch_full = batch[..., :original_h, :original_w] |
|
|
|
|
|
if rgb_outputs: |
|
for d in meta_data: |
|
d.update(count=3, dtype="uint8", compress="lzw", nodata=0) |
|
|
|
save_rgb_imgs( |
|
batch_full[0, ...], |
|
rec_imgs_full[0, ...], |
|
mask_imgs_full[0, ...], |
|
channels, |
|
mean, |
|
std, |
|
output_dir, |
|
meta_data, |
|
) |
|
else: |
|
for d in meta_data: |
|
d.update(compress="lzw", nodata=0) |
|
|
|
save_imgs( |
|
rec_imgs_full[0, ...], |
|
mask_imgs_full[0, ...], |
|
mean, |
|
std, |
|
output_dir, |
|
meta_data, |
|
) |
|
|
|
print("Done!") |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser("MAE run inference", add_help=False) |
|
|
|
parser.add_argument( |
|
"--data_files", |
|
type=str, |
|
nargs="+", |
|
default=["examples/HLS.L30.T13REN.2018013T172747.v2.0.B02.B03.B04.B05.B06.B07_cropped.tif", |
|
"examples/HLS.L30.T13REN.2018029T172738.v2.0.B02.B03.B04.B05.B06.B07_cropped.tif", |
|
"examples/HLS.L30.T13REN.2018061T172724.v2.0.B02.B03.B04.B05.B06.B07_cropped.tif" |
|
], |
|
help="Path to the data files. Assumes multi-band files.", |
|
) |
|
parser.add_argument( |
|
"--config_path", |
|
"-c", |
|
type=str, |
|
default="Prithvi_EO_V2_300_TL_config.yaml", |
|
help="Path to yaml file containing model training parameters.", |
|
) |
|
parser.add_argument( |
|
"--checkpoint", |
|
type=str, |
|
default="Prithvi_EO_V2_300_TL.pt", |
|
help="Path to a checkpoint file to load from.", |
|
) |
|
parser.add_argument( |
|
"--output_dir", |
|
type=str, |
|
default="output", |
|
help="Path to the directory where to save outputs.", |
|
) |
|
parser.add_argument( |
|
"--mask_ratio", |
|
default=0.75, |
|
type=float, |
|
help="Masking ratio (percentage of removed patches). " |
|
"If None (default) use same value used for pretraining.", |
|
) |
|
parser.add_argument( |
|
"--input_indices", |
|
default=None, |
|
type=int, |
|
nargs="+", |
|
help="0-based indices of channels to be selected from the input. By default takes all.", |
|
) |
|
parser.add_argument( |
|
"--rgb_outputs", |
|
action="store_true", |
|
help="If present, output files will only contain RGB channels. " |
|
"Otherwise, all bands will be saved.", |
|
) |
|
args = parser.parse_args() |
|
|
|
main(**vars(args)) |
|
|