Youngja Park commited on
Commit
a504fc9
·
verified ·
1 Parent(s): 2472d44

Upload files for CTI-BERT

Browse files
README.md CHANGED
@@ -1,25 +1,33 @@
1
  ---
2
- license: apache-2.0
3
- language:
4
- - en
5
- metrics:
6
- - accuracy
7
- - bertscore
8
- pipeline_tag: text-classification
9
  ---
10
- CTI-BERT is a pre-trained BERT model for the cybersecurity domain, especially for cyber-threat intelligence extraction and understanding.
11
- For more details, please refer to [this paper](https://aclanthology.org/2023.emnlp-industry.12.pdf).
12
 
 
 
13
 
14
- ### Training
15
 
16
- The model was trained on a security text corpus which contains about 1.2 billion words from
17
- many security news, vulnerability descriptions, books, academic publications, Wikipedia pages, etc.
18
- The model was pretrained using [the run_mlm script](https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_mlm.py) with the MLM (masked language modeling) objective.
19
 
 
20
 
21
- #### Model description
22
- It has a vocabulary of 50,000 tokens and the sequence length of 256.
 
 
 
 
 
 
 
 
 
 
 
23
 
24
  The following hyperparameters were used during training:
25
  - learning_rate: 0.0005
@@ -33,18 +41,13 @@ The following hyperparameters were used during training:
33
  - lr_scheduler_warmup_steps: 10000
34
  - training_steps: 200000
35
 
 
36
 
37
- #### Framework versions
 
 
38
 
39
  - Transformers 4.18.0
40
  - Pytorch 1.12.1+cu102
41
  - Datasets 2.4.0
42
  - Tokenizers 0.12.1
43
-
44
- ### Intended uses & limitations
45
-
46
- You can use the raw model for either masked language modeling or token embedding generation, but it's mostly intended to be fine-tuned on a downstream task,
47
- such as sequence classification (NER), text classification or question answering.
48
-
49
- The model has shown improved performance for various cybersecurity-domain tasks.
50
- However, it is not inteded to be used as the main model for general-domain documents.
 
1
  ---
2
+ tags:
3
+ - generated_from_trainer
4
+ model-index:
5
+ - name: security-bert256-50k
6
+ results: []
 
 
7
  ---
 
 
8
 
9
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
10
+ should probably proofread and complete it, then remove this comment. -->
11
 
12
+ # security-bert256-50k
13
 
14
+ This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset.
 
 
15
 
16
+ ## Model description
17
 
18
+ More information needed
19
+
20
+ ## Intended uses & limitations
21
+
22
+ More information needed
23
+
24
+ ## Training and evaluation data
25
+
26
+ More information needed
27
+
28
+ ## Training procedure
29
+
30
+ ### Training hyperparameters
31
 
32
  The following hyperparameters were used during training:
33
  - learning_rate: 0.0005
 
41
  - lr_scheduler_warmup_steps: 10000
42
  - training_steps: 200000
43
 
44
+ ### Training results
45
 
46
+
47
+
48
+ ### Framework versions
49
 
50
  - Transformers 4.18.0
51
  - Pytorch 1.12.1+cu102
52
  - Datasets 2.4.0
53
  - Tokenizers 0.12.1
 
 
 
 
 
 
 
 
all_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 74.79,
3
+ "train_loss": 5.0799270787734195e-06,
4
+ "train_runtime": 2733.1068,
5
+ "train_samples": 5477256,
6
+ "train_samples_per_second": 149866.079,
7
+ "train_steps_per_second": 73.177
8
+ }
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertForMaskedLM"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "classifier_dropout": null,
7
+ "hidden_act": "gelu",
8
+ "hidden_dropout_prob": 0.1,
9
+ "hidden_size": 768,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 3072,
12
+ "layer_norm_eps": 1e-12,
13
+ "max_position_embeddings": 512,
14
+ "model_type": "bert",
15
+ "num_attention_heads": 12,
16
+ "num_hidden_layers": 12,
17
+ "pad_token_id": 0,
18
+ "position_embedding_type": "absolute",
19
+ "torch_dtype": "float32",
20
+ "transformers_version": "4.18.0",
21
+ "type_vocab_size": 2,
22
+ "use_cache": true,
23
+ "vocab_size": 50000
24
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5cf25a794ac2d7fd8e4f66de5d09b2e1dad0c6fe6296f966e1ac9f2cde72e6f7
3
+ size 498043179
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"do_lower_case": true, "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "tokenize_chinese_chars": true, "strip_accents": null, "model_max_length": 512, "special_tokens_map_file": null, "name_or_path": "./tokenizers/security-bert-uncased-50k", "tokenizer_class": "BertTokenizer"}
train_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 74.79,
3
+ "train_loss": 5.0799270787734195e-06,
4
+ "train_runtime": 2733.1068,
5
+ "train_samples": 5477256,
6
+ "train_samples_per_second": 149866.079,
7
+ "train_steps_per_second": 73.177
8
+ }
trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1de7af2cc1b1475ed45c63f8ae9987c9981bdaaf62cbe6df89d117d256cb0bf4
3
+ size 3055
vocab.txt ADDED
The diff for this file is too large to render. See raw diff