File size: 13,283 Bytes
9123ba9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 |
# Deep learning
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
from torch.utils.data.distributed import DistributedSampler
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.data import DataLoader
from dataset.default import GridDataset
from utils import RMSELoss
# Data
import pandas as pd
import numpy as np
# Standard library
import random
import args
import os
import copy
import shutil
from tqdm import tqdm
# Machine Learning
from sklearn.metrics import mean_absolute_error, r2_score, accuracy_score, roc_auc_score, roc_curve, auc, precision_recall_curve
from scipy import stats
from utils import RMSE, sensitivity, specificity
class Trainer:
def __init__(self, raw_data, grids_path, dataset_name, target, batch_size, hparams, internal_resolution,
target_metric='rmse', seed=0, num_workers=0, checkpoints_folder='./checkpoints', restart_filename=None, save_every_epoch=False, save_ckpt=True, device='cpu'):
# data
self.df_train = raw_data[0]
self.df_valid = raw_data[1]
self.df_test = raw_data[2]
self.grids_path = grids_path
self.dataset_name = dataset_name
self.target = target
self.batch_size = batch_size
self.hparams = hparams
self.internal_resolution = internal_resolution
self.num_workers = num_workers
self._prepare_data()
# config
self.target_metric = target_metric
self.seed = seed
self.checkpoints_folder = checkpoints_folder
self.restart_filename = restart_filename
self.start_epoch = 1
self.save_every_epoch = save_every_epoch
self.save_ckpt = save_ckpt
self.best_vloss = float('inf')
self.last_filename = None
self._set_seed(seed)
# multi-gpu
self.local_rank = int(os.environ["LOCAL_RANK"])
self.global_rank = int(os.environ["RANK"])
def _prepare_data(self):
train_dataset = GridDataset(
dataset=self.df_train,
target=self.target,
root_dir=self.grids_path,
internal_resolution=self.internal_resolution,
)
valid_dataset = GridDataset(
dataset=self.df_valid,
target=self.target,
root_dir=self.grids_path,
internal_resolution=self.internal_resolution,
)
test_dataset = GridDataset(
dataset=self.df_test,
target=self.target,
root_dir=self.grids_path,
internal_resolution=self.internal_resolution,
)
# create dataloader
self.train_loader = DataLoader(
train_dataset,
batch_size=self.batch_size,
num_workers=self.num_workers,
sampler=DistributedSampler(train_dataset),
shuffle=False,
pin_memory=True
)
self.valid_loader = DataLoader(
valid_dataset,
batch_size=self.batch_size,
num_workers=self.num_workers,
sampler=DistributedSampler(valid_dataset),
shuffle=False,
pin_memory=True
)
self.test_loader = DataLoader(
test_dataset,
batch_size=self.batch_size,
num_workers=self.num_workers,
sampler=DistributedSampler(test_dataset),
shuffle=False,
pin_memory=True
)
def compile(self, model, optimizer, loss_fn):
self.model = model.to(self.local_rank)
self.optimizer = optimizer
self.loss_fn = loss_fn
self._print_configuration()
if self.restart_filename:
self._load_checkpoint(self.restart_filename)
print('Checkpoint restored!')
self.model = DDP(self.model, device_ids=[self.local_rank])
def fit(self, max_epochs=500):
for epoch in range(self.start_epoch, max_epochs+1):
print(f'\n=====Epoch [{epoch}/{max_epochs}]=====')
# training
self.model.train()
self.train_loader.sampler.set_epoch(epoch)
train_loss = self._train_one_epoch()
# validation
self.model.eval()
val_preds, val_loss, val_metrics = self._validate_one_epoch(self.valid_loader)
tst_preds, tst_loss, tst_metrics = self._validate_one_epoch(self.test_loader)
if self.global_rank == 0:
for m in val_metrics.keys():
print(f"[VALID] Evaluation {m.upper()}: {round(val_metrics[m], 4)}")
print('-'*64)
for m in tst_metrics.keys():
print(f"[TEST] Evaluation {m.upper()}: {round(tst_metrics[m], 4)}")
############################### Save Finetune checkpoint #######################################
if ((val_loss < self.best_vloss) or self.save_every_epoch) and self.save_ckpt and self.global_rank == 0:
# remove old checkpoint
if (self.last_filename != None) and (not self.save_every_epoch):
os.remove(os.path.join(self.checkpoints_folder, self.last_filename))
# filename
model_name = f'{str(self.model.module)}-Finetune'
self.last_filename = f"{model_name}_seed{self.seed}_{self.dataset_name}_epoch={epoch}_valloss={round(val_loss, 4)}.pt"
# update best loss
self.best_vloss = val_loss
# save checkpoint
print('Saving checkpoint...')
self._save_checkpoint(epoch, self.last_filename)
def evaluate(self, verbose=True):
if verbose:
print("\n=====Test Evaluation=====")
# set model evaluation mode
model_inf = copy.deepcopy(self.model)
model_inf.eval()
# evaluate on test set
tst_preds, tst_loss, tst_metrics = self._validate_one_epoch(self.test_loader, model_inf)
if verbose and self.global_rank == 0:
# show metrics
for m in tst_metrics.keys():
print(f"[TEST] Evaluation {m.upper()}: {round(tst_metrics[m], 4)}")
# save predictions
pd.DataFrame(tst_preds).to_csv(
os.path.join(
self.checkpoints_folder,
f'{self.dataset_name}_{self.target if isinstance(self.target, str) else self.target[0]}_predict_test_seed{self.seed}.csv'
),
index=False
)
def _train_one_epoch(self):
raise NotImplementedError
def _validate_one_epoch(self, data_loader, model=None):
raise NotImplementedError
def _print_configuration(self):
print('----Finetune information----')
print('Dataset:\t', self.dataset_name)
print('Target:\t\t', self.target)
print('Batch size:\t', self.batch_size)
print('LR:\t\t', self._get_lr())
print('Device:\t\t', self.local_rank)
print('Optimizer:\t', self.optimizer.__class__.__name__)
print('Loss function:\t', self.loss_fn.__class__.__name__)
print('Seed:\t\t', self.seed)
print('Train size:\t', self.df_train.shape[0])
print('Valid size:\t', self.df_valid.shape[0])
print('Test size:\t', self.df_test.shape[0])
def _load_checkpoint(self, filename):
ckpt_path = os.path.join(self.checkpoints_folder, filename)
ckpt_dict = torch.load(ckpt_path, map_location='cpu')
self.model.load_state_dict(ckpt_dict['MODEL_STATE'])
self.start_epoch = ckpt_dict['EPOCHS_RUN'] + 1
self.best_vloss = ckpt_dict['finetune_info']['best_vloss']
def _save_checkpoint(self, current_epoch, filename):
if not os.path.exists(self.checkpoints_folder):
os.makedirs(self.checkpoints_folder)
self.model.module.config['finetune'] = vars(self.hparams)
hparams = self.model.module.config
ckpt_dict = {
'MODEL_STATE': self.model.module.state_dict(),
'EPOCHS_RUN': current_epoch,
'hparams': hparams,
'finetune_info': {
'dataset': self.dataset_name,
'target`': self.target,
'batch_size': self.batch_size,
'lr': self._get_lr(),
'device': self.local_rank,
'optim': self.optimizer.__class__.__name__,
'loss_fn': self.loss_fn.__class__.__name__,
'train_size': self.df_train.shape[0],
'valid_size': self.df_valid.shape[0],
'test_size': self.df_test.shape[0],
'best_vloss': self.best_vloss,
},
'seed': self.seed,
}
assert list(ckpt_dict.keys()) == ['MODEL_STATE', 'EPOCHS_RUN', 'hparams', 'finetune_info', 'seed']
torch.save(ckpt_dict, os.path.join(self.checkpoints_folder, filename))
def _set_seed(self, value):
random.seed(value)
torch.manual_seed(value)
np.random.seed(value)
if torch.cuda.is_available():
torch.cuda.manual_seed(value)
torch.cuda.manual_seed_all(value)
cudnn.deterministic = True
cudnn.benchmark = False
def _get_lr(self):
for param_group in self.optimizer.param_groups:
return param_group['lr']
class TrainerRegressor(Trainer):
def __init__(self, raw_data, grids_path, dataset_name, target, batch_size, hparams, internal_resolution,
target_metric='rmse', seed=0, num_workers=0, checkpoints_folder='./checkpoints', restart_filename=None, save_every_epoch=False, save_ckpt=True, device='cpu'):
super().__init__(raw_data, grids_path, dataset_name, target, batch_size, hparams, internal_resolution,
target_metric, seed, num_workers, checkpoints_folder, restart_filename, save_every_epoch, save_ckpt, device)
def _train_one_epoch(self):
running_loss = 0.0
if self.global_rank == 0:
pbar = tqdm(total=len(self.train_loader))
for idx, data in enumerate(self.train_loader):
# Every data instance is an input + label pair
grids, targets = data
targets = targets.to(self.local_rank)
grids = grids.to(self.local_rank)
# zero the parameter gradients (otherwise they are accumulated)
self.optimizer.zero_grad()
# Make predictions for this batch
embeddings = self.model.module.feature_extraction(grids)
outputs = self.model.module.net(embeddings).squeeze(1)
# Compute the loss and its gradients
loss = self.loss_fn(outputs, targets)
loss.backward()
# Adjust learning weights
self.optimizer.step()
# print statistics
running_loss += loss.item()
# progress bar
if self.global_rank == 0:
pbar.update(1)
pbar.set_description('[TRAINING]')
pbar.set_postfix(loss=running_loss/(idx+1))
pbar.refresh()
if self.global_rank == 0:
pbar.close()
return running_loss / len(self.train_loader)
def _validate_one_epoch(self, data_loader, model=None):
data_targets = []
data_preds = []
running_loss = 0.0
model = self.model if model is None else model
if self.global_rank == 0:
pbar = tqdm(total=len(data_loader))
with torch.no_grad():
for idx, data in enumerate(data_loader):
# Every data instance is an input + label pair
grids, targets = data
targets = targets.to(self.local_rank)
grids = grids.to(self.local_rank)
# Make predictions for this batch
embeddings = model.module.feature_extraction(grids)
predictions = model.module.net(embeddings).squeeze(1)
# Compute the loss
loss = self.loss_fn(predictions, targets)
data_targets.append(targets.view(-1))
data_preds.append(predictions.view(-1))
# print statistics
running_loss += loss.item()
# progress bar
if self.global_rank == 0:
pbar.update(1)
pbar.set_description('[EVALUATION]')
pbar.set_postfix(loss=running_loss/(idx+1))
pbar.refresh()
if self.global_rank == 0:
pbar.close()
# Put together predictions and labels from batches
preds = torch.cat(data_preds, dim=0).cpu().numpy()
tgts = torch.cat(data_targets, dim=0).cpu().numpy()
# Compute metrics
mae = mean_absolute_error(tgts, preds)
r2 = r2_score(tgts, preds)
rmse = RMSE(preds, tgts)
spearman = stats.spearmanr(tgts, preds).correlation # scipy 1.12.0
# Rearange metrics
metrics = {
'mae': mae,
'r2': r2,
'rmse': rmse,
'spearman': spearman,
}
return preds, running_loss / len(data_loader), metrics |