File size: 4,367 Bytes
9123ba9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
""" Adapted from https://github.com/SongweiGe/TATS"""
# Copyright (c) Meta Platforms, Inc. All Rights Reserved

import warnings
import torch
import imageio

import math
import numpy as np

import sys
import pdb as pdb_original
# import SimpleITK as sitk
import logging

import imageio.core.util
logging.getLogger("imageio_ffmpeg").setLevel(logging.ERROR)


def get_single_device(cpu=True):
    if cpu:
        return torch.device('cpu')
    elif torch.cuda.is_available():
        return torch.device('cuda')
    elif torch.xpu.is_available():
        return torch.device('xpu')
    elif torch.mps.is_available():
        return torch.device('mps')
    return None


class ForkedPdb(pdb_original.Pdb):
    """A Pdb subclass that may be used
    from a forked multiprocessing child

    """

    def interaction(self, *args, **kwargs):
        _stdin = sys.stdin
        try:
            sys.stdin = open('/dev/stdin')
            pdb_original.Pdb.interaction(self, *args, **kwargs)
        finally:
            sys.stdin = _stdin


# Shifts src_tf dim to dest dim
# i.e. shift_dim(x, 1, -1) would be (b, c, t, h, w) -> (b, t, h, w, c)
def shift_dim(x, src_dim=-1, dest_dim=-1, make_contiguous=True):
    n_dims = len(x.shape)
    if src_dim < 0:
        src_dim = n_dims + src_dim
    if dest_dim < 0:
        dest_dim = n_dims + dest_dim

    assert 0 <= src_dim < n_dims and 0 <= dest_dim < n_dims

    dims = list(range(n_dims))
    del dims[src_dim]

    permutation = []
    ctr = 0
    for i in range(n_dims):
        if i == dest_dim:
            permutation.append(src_dim)
        else:
            permutation.append(dims[ctr])
            ctr += 1
    x = x.permute(permutation)
    if make_contiguous:
        x = x.contiguous()
    return x


# reshapes tensor start from dim i (inclusive)
# to dim j (exclusive) to the desired shape
# e.g. if x.shape = (b, thw, c) then
# view_range(x, 1, 2, (t, h, w)) returns
# x of shape (b, t, h, w, c)
def view_range(x, i, j, shape):
    shape = tuple(shape)

    n_dims = len(x.shape)
    if i < 0:
        i = n_dims + i

    if j is None:
        j = n_dims
    elif j < 0:
        j = n_dims + j

    assert 0 <= i < j <= n_dims

    x_shape = x.shape
    target_shape = x_shape[:i] + shape + x_shape[j:]
    return x.view(target_shape)


def accuracy(output, target, topk=(1,)):
    """Computes the accuracy over the k top predictions for the specified values of k"""
    with torch.no_grad():
        maxk = max(topk)
        batch_size = target.size(0)

        _, pred = output.topk(maxk, 1, True, True)
        pred = pred.t()
        correct = pred.eq(target.reshape(1, -1).expand_as(pred))

        res = []
        for k in topk:
            correct_k = correct[:k].reshape(-1).float().sum(0, keepdim=True)
            res.append(correct_k.mul_(100.0 / batch_size))
        return res


def tensor_slice(x, begin, size):
    assert all([b >= 0 for b in begin])
    size = [l - b if s == -1 else s
            for s, b, l in zip(size, begin, x.shape)]
    assert all([s >= 0 for s in size])

    slices = [slice(b, b + s) for b, s in zip(begin, size)]
    return x[slices]


def adopt_weight(global_step, threshold=0, value=0.):
    weight = 1
    if global_step < threshold:
        weight = value
    return weight

def comp_getattr(args, attr_name, default=None):
    if hasattr(args, attr_name):
        return getattr(args, attr_name)
    else:
        return default


def visualize_tensors(t, name=None, nest=0):
    if name is not None:
        print(name, "current nest: ", nest)
    print("type: ", type(t))
    if 'dict' in str(type(t)):
        print(t.keys())
        for k in t.keys():
            if t[k] is None:
                print(k, "None")
            else:
                if 'Tensor' in str(type(t[k])):
                    print(k, t[k].shape)
                elif 'dict' in str(type(t[k])):
                    print(k, 'dict')
                    visualize_tensors(t[k], name, nest + 1)
                elif 'list' in str(type(t[k])):
                    print(k, len(t[k]))
                    visualize_tensors(t[k], name, nest + 1)
    elif 'list' in str(type(t)):
        print("list length: ", len(t))
        for t2 in t:
            visualize_tensors(t2, name, nest + 1)
    elif 'Tensor' in str(type(t)):
        print(t.shape)
    else:
        print(t)
    return ""