File size: 5,060 Bytes
9123ba9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
"Adapted from https://github.com/SongweiGe/TATS"

from __future__ import absolute_import, division, print_function, annotations
import os
import socket

from typing import Optional, Union, Callable

import sys
sys.path.insert(1, "../diffusion-chem-fm")

import hydra
from omegaconf import DictConfig, open_dict
from train.get_dataset import get_dataset
from vq_gan_3d.model import VQGAN
from trainer import Trainer

# Torch
import torch
from torch.utils.data import DataLoader
from torch.utils.data.distributed import DistributedSampler
from torch.distributed import init_process_group, destroy_process_group


# Get MPI:
try:
    from mpi4py import MPI
    WITH_DDP = True
    LOCAL_RANK = os.environ.get('OMPI_COMM_WORLD_LOCAL_RANK', '0')
    # LOCAL_RANK = os.environ['OMPI_COMM_WORLD_LOCAL_RANK']
    SIZE = MPI.COMM_WORLD.Get_size()
    RANK = MPI.COMM_WORLD.Get_rank()

    WITH_CUDA = torch.cuda.is_available()
    DEVICE = 'gpu' if WITH_CUDA else 'CPU'

    # pytorch will look for these
    os.environ['RANK'] = str(RANK)
    os.environ['WORLD_SIZE'] = str(SIZE)
    # -----------------------------------------------------------
    # NOTE: Get the hostname of the master node, and broadcast
    # it to all other nodes It will want the master address too,
    # which we'll broadcast:
    # -----------------------------------------------------------
    MASTER_ADDR = socket.gethostname() if RANK == 0 else None
    MASTER_ADDR = MPI.COMM_WORLD.bcast(MASTER_ADDR, root=0)
    os.environ['MASTER_ADDR'] = MASTER_ADDR
    os.environ['MASTER_PORT'] = str(2345)

except (ImportError, ModuleNotFoundError) as e:
    WITH_DDP = False
    SIZE = 1
    RANK = 0
    LOCAL_RANK = 0
    MASTER_ADDR = 'localhost'


def ddp_setup(
    rank: Union[int, str],
    world_size: Union[int, str],
    backend: Optional[str] = None,
) -> None:
    if WITH_CUDA:
       backend = 'nccl' if backend is None else str(backend)
    else:
       backend = 'gloo' if backend is None else str(backend)

    init_process_group(
        backend,
        rank=int(rank),
        world_size=int(world_size),
        init_method='env://',
    )
    torch.cuda.set_device(int(LOCAL_RANK))


def load_train_objs(cfg):
    # datasets
    train_dataset, val_dataset, _ = get_dataset(cfg)
    train_dataloader = DataLoader(
        train_dataset, 
        batch_size=cfg.model.batch_size,
        num_workers=cfg.model.num_workers, 
        sampler=DistributedSampler(
            train_dataset,
            num_replicas=SIZE,
            rank=RANK,
        ),
        shuffle=False,
        pin_memory=True
    )
    val_dataloader = None

    # model
    model = VQGAN(cfg)

    # optimizers
    opt_ae = torch.optim.Adam(list(model.encoder.parameters()) +
                                list(model.decoder.parameters()) +
                                list(model.pre_vq_conv.parameters()) +
                                list(model.post_vq_conv.parameters()) +
                                list(model.codebook.parameters()) +
                                list(model.perceptual_model.parameters()),
                                lr=cfg.model.lr, betas=(0.5, 0.9))
    opt_disc = torch.optim.Adam(list(model.image_discriminator.parameters()),
                                lr=cfg.model.lr, betas=(0.5, 0.9))
                            
    return [train_dataloader, val_dataloader], model, [opt_ae, opt_disc]


def run(cfg, save_every: int, total_epochs: int, save_checkpoint_path: str, load_checkpoint_path: str):
    ddp_setup(RANK, SIZE, backend='nccl')

    print('### DDP Info ###')
    print('WORLD SIZE:', SIZE)
    print('LOCAL_RANK:', LOCAL_RANK)
    print('RANK:', RANK)
    print('')

    datasets, model, optimizers = load_train_objs(cfg)

    trainer = Trainer(
        model, 
        datasets, 
        optimizers, 
        save_every, 
        save_checkpoint_path, 
        load_checkpoint_path,
        cfg
    )
    trainer.train(total_epochs)

    destroy_process_group()


@hydra.main(config_path='../config', config_name='base_cfg', version_base=None)
def main(cfg: DictConfig):
    # automatically adjust learning rate
    bs, base_lr, ngpu, accumulate = cfg.model.batch_size, cfg.model.lr, cfg.model.gpus, cfg.model.accumulate_grad_batches

    with open_dict(cfg):
        cfg.model.lr = accumulate * (ngpu/8.) * (bs/4.) * base_lr
        cfg.model.default_root_dir = os.path.join(cfg.model.default_root_dir, cfg.dataset.name, cfg.model.default_root_dir_postfix)
    print("Setting learning rate to {:.2e} = {} (accumulate_grad_batches) * {} (num_gpus/8) * {} (batchsize/4) * {:.2e} (base_lr)".format(cfg.model.lr, accumulate, ngpu/8, bs/4, base_lr))

    if not os.path.isdir(cfg.model.save_checkpoint_path):
        os.mkdir(cfg.model.save_checkpoint_path)

    run(
        cfg, 
        save_every=cfg.model.checkpoint_every, 
        total_epochs=cfg.model.max_epochs,
        save_checkpoint_path=cfg.model.save_checkpoint_path,
        load_checkpoint_path=cfg.model.resume_from_checkpoint
    )


if __name__ == '__main__':
    main()