|
"""Adapted from https://github.com/SongweiGe/TATS""" |
|
|
|
"""Stripped version of https://github.com/richzhang/PerceptualSimilarity/tree/master/models""" |
|
|
|
|
|
from collections import namedtuple |
|
from torchvision import models |
|
import torch.nn as nn |
|
import torch |
|
from tqdm import tqdm |
|
import requests |
|
import os |
|
import hashlib |
|
URL_MAP = { |
|
"vgg_lpips": "https://heibox.uni-heidelberg.de/f/607503859c864bc1b30b/?dl=1" |
|
} |
|
|
|
CKPT_MAP = { |
|
"vgg_lpips": "vgg.pth" |
|
} |
|
|
|
MD5_MAP = { |
|
"vgg_lpips": "d507d7349b931f0638a25a48a722f98a" |
|
} |
|
|
|
|
|
def download(url, local_path, chunk_size=1024): |
|
os.makedirs(os.path.split(local_path)[0], exist_ok=True) |
|
with requests.get(url, stream=True) as r: |
|
total_size = int(r.headers.get("content-length", 0)) |
|
with tqdm(total=total_size, unit="B", unit_scale=True) as pbar: |
|
with open(local_path, "wb") as f: |
|
for data in r.iter_content(chunk_size=chunk_size): |
|
if data: |
|
f.write(data) |
|
pbar.update(chunk_size) |
|
|
|
|
|
def md5_hash(path): |
|
with open(path, "rb") as f: |
|
content = f.read() |
|
return hashlib.md5(content).hexdigest() |
|
|
|
|
|
def get_ckpt_path(name, root, check=False): |
|
assert name in URL_MAP |
|
path = os.path.join(root, CKPT_MAP[name]) |
|
if not os.path.exists(path) or (check and not md5_hash(path) == MD5_MAP[name]): |
|
print("Downloading {} model from {} to {}".format( |
|
name, URL_MAP[name], path)) |
|
download(URL_MAP[name], path) |
|
md5 = md5_hash(path) |
|
assert md5 == MD5_MAP[name], md5 |
|
return path |
|
|
|
|
|
class LPIPS(nn.Module): |
|
|
|
def __init__(self, use_dropout=True): |
|
super().__init__() |
|
self.scaling_layer = ScalingLayer() |
|
self.chns = [64, 128, 256, 512, 512] |
|
self.net = vgg16(pretrained=False, requires_grad=True) |
|
self.lin0 = NetLinLayer(self.chns[0], use_dropout=use_dropout) |
|
self.lin1 = NetLinLayer(self.chns[1], use_dropout=use_dropout) |
|
self.lin2 = NetLinLayer(self.chns[2], use_dropout=use_dropout) |
|
self.lin3 = NetLinLayer(self.chns[3], use_dropout=use_dropout) |
|
self.lin4 = NetLinLayer(self.chns[4], use_dropout=use_dropout) |
|
self.load_from_pretrained() |
|
|
|
|
|
|
|
def load_from_pretrained(self, name="vgg_lpips"): |
|
ckpt = get_ckpt_path(name, os.path.join( |
|
os.path.dirname(os.path.abspath(__file__)), "cache")) |
|
self.load_state_dict(torch.load( |
|
ckpt, map_location=torch.device("cpu")), strict=False) |
|
print("loaded pretrained LPIPS loss from {}".format(ckpt)) |
|
|
|
@classmethod |
|
def from_pretrained(cls, name="vgg_lpips"): |
|
if name != "vgg_lpips": |
|
raise NotImplementedError |
|
model = cls() |
|
ckpt = get_ckpt_path(name, os.path.join( |
|
os.path.dirname(os.path.abspath(__file__)), "cache")) |
|
model.load_state_dict(torch.load( |
|
ckpt, map_location=torch.device("cpu")), strict=False) |
|
return model |
|
|
|
def forward(self, input, target): |
|
in0_input, in1_input = (self.scaling_layer( |
|
input), self.scaling_layer(target)) |
|
outs0, outs1 = self.net(in0_input), self.net(in1_input) |
|
feats0, feats1, diffs = {}, {}, {} |
|
lins = [self.lin0, self.lin1, self.lin2, self.lin3, self.lin4] |
|
for kk in range(len(self.chns)): |
|
feats0[kk], feats1[kk] = normalize_tensor( |
|
outs0[kk]), normalize_tensor(outs1[kk]) |
|
diffs[kk] = (feats0[kk] - feats1[kk]) ** 2 |
|
|
|
res = [spatial_average(lins[kk].model(diffs[kk]), keepdim=True) |
|
for kk in range(len(self.chns))] |
|
val = res[0] |
|
for l in range(1, len(self.chns)): |
|
val += res[l] |
|
return val |
|
|
|
|
|
class ScalingLayer(nn.Module): |
|
def __init__(self): |
|
super(ScalingLayer, self).__init__() |
|
self.register_buffer('shift', torch.Tensor( |
|
[-.030, -.088, -.188])[None, :, None, None]) |
|
self.register_buffer('scale', torch.Tensor( |
|
[.458, .448, .450])[None, :, None, None]) |
|
|
|
def forward(self, inp): |
|
return (inp - self.shift) / self.scale |
|
|
|
|
|
class NetLinLayer(nn.Module): |
|
""" A single linear layer which does a 1x1 conv """ |
|
|
|
def __init__(self, chn_in, chn_out=1, use_dropout=False): |
|
super(NetLinLayer, self).__init__() |
|
layers = [nn.Dropout(), ] if (use_dropout) else [] |
|
layers += [nn.Conv2d(chn_in, chn_out, 1, stride=1, |
|
padding=0, bias=False), ] |
|
self.model = nn.Sequential(*layers) |
|
|
|
|
|
class vgg16(torch.nn.Module): |
|
def __init__(self, requires_grad=False, pretrained=True): |
|
super(vgg16, self).__init__() |
|
vgg_pretrained_features = models.vgg16(pretrained=pretrained).features |
|
self.slice1 = torch.nn.Sequential() |
|
self.slice2 = torch.nn.Sequential() |
|
self.slice3 = torch.nn.Sequential() |
|
self.slice4 = torch.nn.Sequential() |
|
self.slice5 = torch.nn.Sequential() |
|
self.N_slices = 5 |
|
for x in range(4): |
|
self.slice1.add_module(str(x), vgg_pretrained_features[x]) |
|
for x in range(4, 9): |
|
self.slice2.add_module(str(x), vgg_pretrained_features[x]) |
|
for x in range(9, 16): |
|
self.slice3.add_module(str(x), vgg_pretrained_features[x]) |
|
for x in range(16, 23): |
|
self.slice4.add_module(str(x), vgg_pretrained_features[x]) |
|
for x in range(23, 30): |
|
self.slice5.add_module(str(x), vgg_pretrained_features[x]) |
|
if not requires_grad: |
|
for param in self.parameters(): |
|
param.requires_grad = False |
|
|
|
def forward(self, X): |
|
h = self.slice1(X) |
|
h_relu1_2 = h |
|
h = self.slice2(h) |
|
h_relu2_2 = h |
|
h = self.slice3(h) |
|
h_relu3_3 = h |
|
h = self.slice4(h) |
|
h_relu4_3 = h |
|
h = self.slice5(h) |
|
h_relu5_3 = h |
|
vgg_outputs = namedtuple( |
|
"VggOutputs", ['relu1_2', 'relu2_2', 'relu3_3', 'relu4_3', 'relu5_3']) |
|
out = vgg_outputs(h_relu1_2, h_relu2_2, |
|
h_relu3_3, h_relu4_3, h_relu5_3) |
|
return out |
|
|
|
|
|
def normalize_tensor(x, eps=1e-10): |
|
norm_factor = torch.sqrt(torch.sum(x**2, dim=1, keepdim=True)) |
|
return x/(norm_factor+eps) |
|
|
|
|
|
def spatial_average(x, keepdim=True): |
|
return x.mean([2, 3], keepdim=keepdim) |
|
|