# Copyright (c) Meta Platforms, Inc. All Rights Reserved import os import numpy as np from PIL import Image import torch import torchvision from pytorch_lightning.callbacks import Callback from pytorch_lightning.utilities.distributed import rank_zero_only class ImageLogger(Callback): def __init__(self, batch_frequency, max_images, clamp=True, increase_log_steps=True): super().__init__() self.batch_freq = batch_frequency self.max_images = max_images self.log_steps = [ 2 ** n for n in range(int(np.log2(self.batch_freq)) + 1)] if not increase_log_steps: self.log_steps = [self.batch_freq] self.clamp = clamp @rank_zero_only def log_local(self, save_dir, split, images, global_step, current_epoch, batch_idx): root = os.path.join(save_dir, "images", split) # print(root) #mean = images.pop('mean_org') #mean = mean[(None,)*3].swapaxes(0, -1) #std = images.pop('std_org') #std = std[(None,)*3].swapaxes(0, -1) for k in images: images[k] = (images[k] + 1.0) * 127.5 # std + mean torch.clamp(images[k], 0, 255) grid = torchvision.utils.make_grid(images[k], nrow=4) grid = grid grid = grid.transpose(0, 1).transpose(1, 2).squeeze(-1) grid = grid.numpy() grid = (grid).astype(np.uint8) filename = "{}_gs-{:06}_e-{:06}_b-{:06}.png".format( k, global_step, current_epoch, batch_idx) path = os.path.join(root, filename) os.makedirs(os.path.split(path)[0], exist_ok=True) Image.fromarray(grid).save(path) def log_img(self, pl_module, batch, batch_idx, split="train"): if (self.check_frequency(batch_idx) and # batch_idx % self.batch_freq == 0 hasattr(pl_module, "log_images") and callable(pl_module.log_images) and self.max_images > 0): logger = type(pl_module.logger) is_train = pl_module.training if is_train: pl_module.eval() with torch.no_grad(): images = pl_module.log_images(batch, split=split) for k in images: N = min(images[k].shape[0], self.max_images) images[k] = images[k][:N] if isinstance(images[k], torch.Tensor): images[k] = images[k].detach().cpu() self.log_local(pl_module.logger.save_dir, split, images, pl_module.global_step, pl_module.current_epoch, batch_idx) if is_train: pl_module.train() def check_frequency(self, batch_idx): if (batch_idx % self.batch_freq) == 0 or (batch_idx in self.log_steps): try: self.log_steps.pop(0) except IndexError: pass return True return False def on_train_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx): self.log_img(pl_module, batch, batch_idx, split="train") def on_validation_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx): self.log_img(pl_module, batch, batch_idx, split="val")