from dataset import DEFAULTDataset from torch.utils.data import WeightedRandomSampler def get_dataset(cfg): if cfg.dataset.name == 'DEFAULT': train_dataset = DEFAULTDataset( root_dir=cfg.dataset.root_dir, internal_resolution=cfg.model.internal_resolution) val_dataset = DEFAULTDataset( root_dir=cfg.dataset.root_dir, internal_resolution=cfg.model.internal_resolution) sampler = None return train_dataset, val_dataset, sampler raise ValueError(f'{cfg.dataset.name} Dataset is not available')