SagiPolaczek commited on
Commit
c4576f1
1 Parent(s): 52ef467

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +5 -5
README.md CHANGED
@@ -11,7 +11,7 @@ library_name: biomed
11
  license: apache-2.0
12
  ---
13
 
14
- The **ibm/biomed.omics.bl.sm.ma-ted-400m** model is a biomedical foundation model trained on over 2 billion biological samples across multiple modalities, including proteins, small molecules, and single-cell gene data.
15
  Designed for robust performance, it achieves state-of-the-art results over a variety of tasks across the entire drug discovery pipeline and the diverse biomedical domains.
16
 
17
  Based on the **M**olecular **A**ligned **M**ulti-**M**odal **A**rchitecture and **L**anguage (**MAMMAL**), a flexible, multi-domain architecture with an adaptable task prompt syntax.
@@ -30,13 +30,13 @@ The syntax allows for dynamic combinations of tokens and scalars, enabling class
30
 
31
  ## Usage
32
 
33
- Using `ibm/biomed.omics.bl.sm.ma-ted-400m` requires installing [https://github.com/BiomedSciAI/biomed-multi-alignment](https://github.com/TBD)
34
 
35
  ```
36
  pip install git+https://github.com/BiomedSciAI/biomed-multi-alignment.git
37
  ```
38
 
39
- A simple example for a task already supported by `ibm/biomed.omics.bl.sm.ma-ted-400m`:
40
  ```python
41
  import torch
42
  from fuse.data.tokenizers.modular_tokenizer.op import ModularTokenizerOp
@@ -44,10 +44,10 @@ from mammal.model import Mammal
44
  from mammal.keys import *
45
 
46
  # Load Model
47
- model = Mammal.from_pretrained("ibm/biomed.omics.bl.sm.ma-ted-400m")
48
 
49
  # Load Tokenizer
50
- tokenizer_op = ModularTokenizerOp.from_pretrained("ibm/biomed.omics.bl.sm.ma-ted-400m")
51
 
52
  # Prepare Input Prompt
53
  protein_calmodulin = "MADQLTEEQIAEFKEAFSLFDKDGDGTITTKELGTVMRSLGQNPTEAELQDMISELDQDGFIDKEDLHDGDGKISFEEFLNLVNKEMTADVDGDGQVNYEEFVTMMTSK"
 
11
  license: apache-2.0
12
  ---
13
 
14
+ The **ibm/biomed.omics.bl.sm.ma-ted-458m** model is a biomedical foundation model trained on over 2 billion biological samples across multiple modalities, including proteins, small molecules, and single-cell gene data.
15
  Designed for robust performance, it achieves state-of-the-art results over a variety of tasks across the entire drug discovery pipeline and the diverse biomedical domains.
16
 
17
  Based on the **M**olecular **A**ligned **M**ulti-**M**odal **A**rchitecture and **L**anguage (**MAMMAL**), a flexible, multi-domain architecture with an adaptable task prompt syntax.
 
30
 
31
  ## Usage
32
 
33
+ Using `ibm/biomed.omics.bl.sm.ma-ted-458m` requires installing [https://github.com/BiomedSciAI/biomed-multi-alignment](https://github.com/TBD)
34
 
35
  ```
36
  pip install git+https://github.com/BiomedSciAI/biomed-multi-alignment.git
37
  ```
38
 
39
+ A simple example for a task already supported by `ibm/biomed.omics.bl.sm.ma-ted-458m`:
40
  ```python
41
  import torch
42
  from fuse.data.tokenizers.modular_tokenizer.op import ModularTokenizerOp
 
44
  from mammal.keys import *
45
 
46
  # Load Model
47
+ model = Mammal.from_pretrained("ibm/biomed.omics.bl.sm.ma-ted-458m")
48
 
49
  # Load Tokenizer
50
+ tokenizer_op = ModularTokenizerOp.from_pretrained("ibm/biomed.omics.bl.sm.ma-ted-458m")
51
 
52
  # Prepare Input Prompt
53
  protein_calmodulin = "MADQLTEEQIAEFKEAFSLFDKDGDGTITTKELGTVMRSLGQNPTEAELQDMISELDQDGFIDKEDLHDGDGKISFEEFLNLVNKEMTADVDGDGQVNYEEFVTMMTSK"