SagiPolaczek
commited on
Commit
•
c4576f1
1
Parent(s):
52ef467
Update README.md
Browse files
README.md
CHANGED
@@ -11,7 +11,7 @@ library_name: biomed
|
|
11 |
license: apache-2.0
|
12 |
---
|
13 |
|
14 |
-
The **ibm/biomed.omics.bl.sm.ma-ted-
|
15 |
Designed for robust performance, it achieves state-of-the-art results over a variety of tasks across the entire drug discovery pipeline and the diverse biomedical domains.
|
16 |
|
17 |
Based on the **M**olecular **A**ligned **M**ulti-**M**odal **A**rchitecture and **L**anguage (**MAMMAL**), a flexible, multi-domain architecture with an adaptable task prompt syntax.
|
@@ -30,13 +30,13 @@ The syntax allows for dynamic combinations of tokens and scalars, enabling class
|
|
30 |
|
31 |
## Usage
|
32 |
|
33 |
-
Using `ibm/biomed.omics.bl.sm.ma-ted-
|
34 |
|
35 |
```
|
36 |
pip install git+https://github.com/BiomedSciAI/biomed-multi-alignment.git
|
37 |
```
|
38 |
|
39 |
-
A simple example for a task already supported by `ibm/biomed.omics.bl.sm.ma-ted-
|
40 |
```python
|
41 |
import torch
|
42 |
from fuse.data.tokenizers.modular_tokenizer.op import ModularTokenizerOp
|
@@ -44,10 +44,10 @@ from mammal.model import Mammal
|
|
44 |
from mammal.keys import *
|
45 |
|
46 |
# Load Model
|
47 |
-
model = Mammal.from_pretrained("ibm/biomed.omics.bl.sm.ma-ted-
|
48 |
|
49 |
# Load Tokenizer
|
50 |
-
tokenizer_op = ModularTokenizerOp.from_pretrained("ibm/biomed.omics.bl.sm.ma-ted-
|
51 |
|
52 |
# Prepare Input Prompt
|
53 |
protein_calmodulin = "MADQLTEEQIAEFKEAFSLFDKDGDGTITTKELGTVMRSLGQNPTEAELQDMISELDQDGFIDKEDLHDGDGKISFEEFLNLVNKEMTADVDGDGQVNYEEFVTMMTSK"
|
|
|
11 |
license: apache-2.0
|
12 |
---
|
13 |
|
14 |
+
The **ibm/biomed.omics.bl.sm.ma-ted-458m** model is a biomedical foundation model trained on over 2 billion biological samples across multiple modalities, including proteins, small molecules, and single-cell gene data.
|
15 |
Designed for robust performance, it achieves state-of-the-art results over a variety of tasks across the entire drug discovery pipeline and the diverse biomedical domains.
|
16 |
|
17 |
Based on the **M**olecular **A**ligned **M**ulti-**M**odal **A**rchitecture and **L**anguage (**MAMMAL**), a flexible, multi-domain architecture with an adaptable task prompt syntax.
|
|
|
30 |
|
31 |
## Usage
|
32 |
|
33 |
+
Using `ibm/biomed.omics.bl.sm.ma-ted-458m` requires installing [https://github.com/BiomedSciAI/biomed-multi-alignment](https://github.com/TBD)
|
34 |
|
35 |
```
|
36 |
pip install git+https://github.com/BiomedSciAI/biomed-multi-alignment.git
|
37 |
```
|
38 |
|
39 |
+
A simple example for a task already supported by `ibm/biomed.omics.bl.sm.ma-ted-458m`:
|
40 |
```python
|
41 |
import torch
|
42 |
from fuse.data.tokenizers.modular_tokenizer.op import ModularTokenizerOp
|
|
|
44 |
from mammal.keys import *
|
45 |
|
46 |
# Load Model
|
47 |
+
model = Mammal.from_pretrained("ibm/biomed.omics.bl.sm.ma-ted-458m")
|
48 |
|
49 |
# Load Tokenizer
|
50 |
+
tokenizer_op = ModularTokenizerOp.from_pretrained("ibm/biomed.omics.bl.sm.ma-ted-458m")
|
51 |
|
52 |
# Prepare Input Prompt
|
53 |
protein_calmodulin = "MADQLTEEQIAEFKEAFSLFDKDGDGTITTKELGTVMRSLGQNPTEAELQDMISELDQDGFIDKEDLHDGDGKISFEEFLNLVNKEMTADVDGDGQVNYEEFVTMMTSK"
|