File size: 22,679 Bytes
02e480f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
PATTERN = "(\[[^\]]+]|Br?|Cl?|N|O|S|P|F|I|b|c|n|o|s|p|\(|\)|\.|=|#|-|\+|\\\\|\/|:|~|@|\?|>|\*|\$|\%[0-9]{2}|[0-9])"
# Deep learning
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.backends.cudnn as cudnn

# Transformers
from fast_transformers.attention import AttentionLayer
from fast_transformers.events import QKVEvent
from fast_transformers.transformers import TransformerEncoder, TransformerEncoderLayer
from fast_transformers.builders.transformer_builders import BaseTransformerEncoderBuilder
from fast_transformers.builders.attention_builders import AttentionBuilder
from fast_transformers.feature_maps import GeneralizedRandomFeatures
from fast_transformers.masking import LengthMask
from transformers import BertTokenizer

# Data
import numpy as np
import pandas as pd

# Standard library
from functools import partial
import regex as re
import random
import os
import gc
from tqdm import tqdm
tqdm.pandas()


class MolTranBertTokenizer(BertTokenizer):
    def __init__(self, vocab_file: str = '',
                 do_lower_case=False,
                 unk_token='<pad>',
                 sep_token='<eos>',
                 pad_token='<pad>',
                 cls_token='<bos>',
                 mask_token='<mask>',
                 **kwargs):
        super().__init__(vocab_file,
                         unk_token=unk_token,
                         sep_token=sep_token,
                         pad_token=pad_token,
                         cls_token=cls_token,
                         mask_token=mask_token,
                         **kwargs)

        self.regex_tokenizer = re.compile(PATTERN)
        self.wordpiece_tokenizer = None
        self.basic_tokenizer = None
        with open(vocab_file) as f:
            self.padding_idx = f.readlines().index(pad_token+'\n')

    def _tokenize(self, text):
        split_tokens = self.regex_tokenizer.findall(text)
        return split_tokens
    
    def convert_idx_to_tokens(self, idx_tensor):
        tokens = [self.convert_ids_to_tokens(idx) for idx in idx_tensor.tolist()]
        return tokens

    def convert_tokens_to_string(self, tokens):
        stopwords = ['<bos>', '<eos>']
        clean_tokens = [word for word in tokens if word not in stopwords]
        out_string = ''.join(clean_tokens)
        return out_string
    
    def get_padding_idx(self):
        return self.padding_idx
    
    def idx_to_smiles(self, torch_model, idx):
        '''Convert tokens idx back to SMILES text'''
        rev_tokens = torch_model.tokenizer.convert_idx_to_tokens(idx)
        flat_list_tokens = [item for sublist in rev_tokens for item in sublist]
        decoded_smiles = torch_model.tokenizer.convert_tokens_to_string(flat_list_tokens)
        return decoded_smiles


## Transformer layers
class RotaryEmbedding(torch.nn.Module):
    
    def __init__(self, dim, base=10000):
        super().__init__()
        inv_freq = 1. / (base ** (torch.arange(0, dim, 2).float() / dim))
        self.register_buffer('inv_freq', inv_freq)
        self.seq_len_cached = 0 
        self.cos_cached = None
        self.sin_cached = None

    def forward(self, x, seq_dim=1):
        seq_len = x.shape[seq_dim]
        if seq_len != self.seq_len_cached:
            self.seq_len_cached = seq_len
            
            t = torch.arange(x.shape[seq_dim], device=x.device).type_as(self.inv_freq)
            freqs = torch.einsum('i,j->ij', t, self.inv_freq)
            emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
            
            self.cos_cached = emb.cos()[None,:, None, :]
            self.sin_cached = emb.sin()[None,:, None, :]
                
        return self.cos_cached, self.sin_cached

def rotate_half(x):
    x1, x2 = x[..., :x.shape[-1] // 2], x[..., x.shape[-1] // 2:]
    return torch.cat((-x2, x1), dim=x1.ndim - 1) # dim=-1 triggers a bug in earlier torch versions

@torch.jit.script
def apply_rotary_pos_emb(q, k, cos, sin):
    return (q * cos) + (rotate_half(q) * sin), (k * cos) + (rotate_half(k) * sin)

class RotateAttentionLayer(AttentionLayer):
    """Rotate attention layer inherits from fast_transformer attention layer. 
        The only thing added is an Embedding encoding, for more information
        on the attention layer see the fast_transformers code
    """
    def __init__(self, attention, d_model, n_heads, d_keys=None,
                 d_values=None, event_dispatcher=""):
        super(RotateAttentionLayer, self).__init__(attention,d_model, n_heads, d_keys=d_keys,
                 d_values=d_values, event_dispatcher=event_dispatcher)

        self.rotaryemb = RotaryEmbedding(d_keys)
        print('Using Rotation Embedding')

    def forward(self, queries, keys, values, attn_mask, query_lengths,
                key_lengths):
        """
        Using the same frame work as the fast_Transformers attention layer
        but injecting rotary information to the queries and the keys
        after the keys and queries are projected. 
        In the argument description we make use of the following sizes
            - N: the batch size
            - L: The maximum length of the queries
            - S: The maximum length of the keys (the actual length per sequence
              is given by the length mask)
            - D: The input feature dimensionality passed in the constructor as
              'd_model'
        Arguments
        ---------
            queries: (N, L, D) The tensor containing the queries
            keys: (N, S, D) The tensor containing the keys
            values: (N, S, D) The tensor containing the values
            attn_mask: An implementation of BaseMask that encodes where each
                       query can attend to
            query_lengths: An implementation of  BaseMask that encodes how
                           many queries each sequence in the batch consists of
            key_lengths: An implementation of BaseMask that encodes how
                         many queries each sequence in the batch consists of
        Returns
        -------
            The new value for each query as a tensor of shape (N, L, D).
        """
        # Extract the dimensions into local variables
        N, L, _ = queries.shape
        _, S, _ = keys.shape
        H = self.n_heads

        # Project the queries/keys/values
        queries = self.query_projection(queries).view(N, L, H, -1)
        keys = self.key_projection(keys).view(N, S, H, -1)
        cos, sin = self.rotaryemb(queries)
        queries, keys = apply_rotary_pos_emb(queries, keys, cos, sin)
        values = self.value_projection(values).view(N, S, H, -1)
        # Let the world know of the qkv
        self.event_dispatcher.dispatch(QKVEvent(self, queries, keys, values))


        # Compute the attention
        new_values = self.inner_attention(
            queries,
            keys,
            values,
            attn_mask,
            query_lengths,
            key_lengths
        ).view(N, L, -1)

        # Project the output and return
        return self.out_projection(new_values)

class RotateEncoderBuilder(BaseTransformerEncoderBuilder):
    """Build a batch transformer encoder with Relative Rotary embeddings
    for training or processing of sequences all elements at a time.
    Example usage:
        builder = RotateEncoderBuilder()
        builder.n_layers = 12
        builder.n_heads = 8
        builder.feed_forward_dimensions = 1024
        builder.query_dimensions = 64
        builder.value_dimensions = 64
        builder.dropout = 0.1
        builder.attention_dropout = 0.1
        builder.attention_type = "linear"
        transformer = builder.get()
    """
    def _get_attention_builder(self):
        """Return an instance of the appropriate attention builder."""
        return AttentionBuilder()

    def _get_attention_layer_class(self):
        """Return the class for the layer that projects queries keys and
        values."""
        return RotateAttentionLayer

    def _get_encoder_class(self):
        """Return the class for the transformer encoder."""
        return TransformerEncoder

    def _get_encoder_layer_class(self):
        """Return the class for the transformer encoder layer."""
        return TransformerEncoderLayer


class AutoEncoderLayer(nn.Module):

    def __init__(self, feature_size, latent_size):
        super().__init__()
        self.encoder = self.Encoder(feature_size, latent_size)
        self.decoder = self.Decoder(feature_size, latent_size)
    
    class Encoder(nn.Module):

        def __init__(self, feature_size, latent_size):
            super().__init__()
            self.is_cuda_available = torch.cuda.is_available()
            self.fc1 = nn.Linear(feature_size, latent_size)
            self.ln_f = nn.LayerNorm(latent_size)
            self.lat = nn.Linear(latent_size, latent_size, bias=False)
        
        def forward(self, x):
            if self.is_cuda_available:
                self.fc1.cuda()
                self.ln_f.cuda()
                self.lat.cuda()
                x = x.cuda()
            x = F.gelu(self.fc1(x))
            x = self.ln_f(x)
            x = self.lat(x)
            return x # -> (N, D)
    
    class Decoder(nn.Module):

        def __init__(self, feature_size, latent_size):
            super().__init__()
            self.is_cuda_available = torch.cuda.is_available()
            self.fc1 = nn.Linear(latent_size, latent_size)
            self.ln_f = nn.LayerNorm(latent_size)
            self.rec = nn.Linear(latent_size, feature_size, bias=False)
        
        def forward(self, x):
            if self.is_cuda_available:
                self.fc1.cuda()
                self.ln_f.cuda()
                self.rec.cuda()
                x = x.cuda()
            x = F.gelu(self.fc1(x))
            x = self.ln_f(x)
            x = self.rec(x)
            return x # -> (N, L*D)


class LangLayer(nn.Module):

    def __init__(self, n_embd, n_vocab):
        super().__init__()
        self.is_cuda_available = torch.cuda.is_available()
        self.embed = nn.Linear(n_embd, n_embd)
        self.ln_f = nn.LayerNorm(n_embd)
        self.head = nn.Linear(n_embd, n_vocab, bias=False)
    
    def forward(self, tensor):
        if self.is_cuda_available:
            self.embed.cuda()
            self.ln_f.cuda()
            self.head.cuda()
            tensor = tensor.cuda()
        tensor = self.embed(tensor)
        tensor = F.gelu(tensor)
        tensor = self.ln_f(tensor)
        tensor = self.head(tensor)
        return tensor
    

class Net(nn.Module):
    
    def __init__(self, smiles_embed_dim, n_output=1, dropout=0.2):
        super().__init__()
        self.desc_skip_connection = True
        self.fc1 = nn.Linear(smiles_embed_dim, smiles_embed_dim)
        self.dropout1 = nn.Dropout(dropout)
        self.relu1 = nn.GELU()
        self.fc2 = nn.Linear(smiles_embed_dim, smiles_embed_dim)
        self.dropout2 = nn.Dropout(dropout)
        self.relu2 = nn.GELU()
        self.final = nn.Linear(smiles_embed_dim, n_output)

    def forward(self, smiles_emb, multitask=False):
        x_out = self.fc1(smiles_emb)
        x_out = self.dropout1(x_out)
        x_out = self.relu1(x_out)

        if self.desc_skip_connection is True:
            x_out = x_out + smiles_emb

        z = self.fc2(x_out)
        z = self.dropout2(z)
        z = self.relu2(z)
        if self.desc_skip_connection is True:
            z = self.final(z + x_out)
        else:
            z = self.final(z)

        if multitask:
            return F.sigmoid(z)
        return z


class MoLEncoder(nn.Module):

    def __init__(self, config, n_vocab):
        super(MoLEncoder, self).__init__()

        # embeddings
        self.config = config
        self.tok_emb = nn.Embedding(n_vocab, config['n_embd'])
        self.drop = nn.Dropout(config['d_dropout'])

        # transformer
        builder = RotateEncoderBuilder.from_kwargs(
            n_layers=config['n_layer'],
            n_heads=config['n_head'],
            query_dimensions=config['n_embd']//config['n_head'],
            value_dimensions=config['n_embd']//config['n_head'],
            feed_forward_dimensions=config['n_embd'],
            attention_type='linear',
            # unless we do deterministic_eval here, we will have random outputs
            feature_map=partial(GeneralizedRandomFeatures, 
                                n_dims=config['num_feats'], 
                                deterministic_eval=True),
            activation='gelu'
        )
        self.blocks = builder.get()

        # classification
        self.lang_model = LangLayer(config['n_embd'], n_vocab)

    def forward(self, idx, mask):
        # transformer encoder
        x = self.tok_emb(idx) # each index maps to a (learnable) vector
        x = self.drop(x)
        x = self.blocks(x, length_mask=LengthMask(mask.sum(-1), max_len=idx.shape[1]))

        # add padding
        token_embeddings = x
        input_mask_expanded = mask.unsqueeze(-1).expand(token_embeddings.size()).float()
        mask_embeddings = (token_embeddings * input_mask_expanded)
        token_embeddings = F.pad(mask_embeddings, pad=(0, 0, 0, self.config['max_len'] - mask_embeddings.shape[1]), value=0)

        return token_embeddings


class MoLDecoder(nn.Module):

    def __init__(self, n_vocab, max_len, n_embd, n_gpu=None):
        super(MoLDecoder, self).__init__()

        self.max_len = max_len
        self.n_embd = n_embd
        self.n_gpu = n_gpu
        self.autoencoder = AutoEncoderLayer(n_embd*max_len, n_embd)
        self.lang_model = LangLayer(n_embd, n_vocab)


class Smi_ted(nn.Module):
    """materials.smi-ted-Light 289M Parameters"""

    def __init__(self, tokenizer, config=None):
        super(Smi_ted, self).__init__()

        # configuration
        self.config = config
        self.tokenizer = tokenizer
        self.padding_idx = tokenizer.get_padding_idx()
        self.n_vocab = len(self.tokenizer.vocab)
        self.is_cuda_available = torch.cuda.is_available()

        # instantiate modules
        if self.config:
            self.encoder = MoLEncoder(self.config, self.n_vocab)
            self.decoder = MoLDecoder(self.n_vocab, self.config['max_len'], self.config['n_embd'])
            self.net = Net(self.config['n_embd'], n_output=self.config['n_output'], dropout=self.config['d_dropout'])
        
    def load_checkpoint(self, ckpt_path):
        # load checkpoint file
        checkpoint = torch.load(ckpt_path, map_location=torch.device('cpu'))

        # load hyparameters
        self.config = checkpoint['hparams']
        self.max_len = self.config['max_len']
        self.n_embd = self.config['n_embd']
        self._set_seed(self.config['seed'])

        # instantiate modules
        self.encoder = MoLEncoder(self.config, self.n_vocab)
        self.decoder = MoLDecoder(self.n_vocab, self.max_len, self.n_embd)
        self.net = Net(self.n_embd, n_output=self.config['n_output'] if 'n_output' in self.config else 1, dropout=self.config['d_dropout'])

        # load weights
        if 'state_dict' in checkpoint:
            if isinstance(checkpoint['state_dict'], list):
                self.encoder.load_state_dict(checkpoint['state_dict'][0], strict=False)
                self.decoder.load_state_dict(checkpoint['state_dict'][1], strict=False)
            else:
                self.load_state_dict(checkpoint['state_dict'], strict=False)
        elif 'MODEL_STATE' in checkpoint:
            self.load_state_dict(checkpoint['MODEL_STATE'], strict=False)

        # load RNG states each time the model and states are loaded from checkpoint
        if 'rng' in self.config:
            rng = self.config['rng']
            for key, value in rng.items():
                if key =='torch_state':
                    torch.set_rng_state(value.cpu())
                elif key =='cuda_state':
                    torch.cuda.set_rng_state(value.cpu())
                elif key =='numpy_state':
                    np.random.set_state(value)
                elif key =='python_state':
                    random.setstate(value)
                else:
                    print('unrecognized state')

    def _set_seed(self, value):
        print('Random Seed:', value)
        random.seed(value)
        torch.manual_seed(value)
        torch.cuda.manual_seed(value)
        torch.cuda.manual_seed_all(value)
        np.random.seed(value)
        cudnn.deterministic = True
        cudnn.benchmark = False

    def forward(self, smiles, batch_size=100):
        return self.decode(self.encode(smiles, batch_size=batch_size, return_torch=True))
            
    def tokenize(self, smiles):
        """Tokenize a string into tokens."""
        if isinstance(smiles, str):
            batch = [smiles]
        else:
            batch = smiles
        
        tokens = self.tokenizer(
            batch, 
            padding=True,
            truncation=True, 
            add_special_tokens=True, 
            return_tensors="pt",
            max_length=self.max_len,
        )
        
        idx = tokens['input_ids'].clone().detach()
        mask = tokens['attention_mask'].clone().detach()

        if self.is_cuda_available:
            return idx.cuda(), mask.cuda()
        
        return idx, mask
    
    def extract_all(self, smiles):
        """Extract all elements from each part of smi-ted. Be careful."""
        # evaluation mode
        self.encoder.eval()
        self.decoder.eval()
        if self.is_cuda_available:
            self.encoder.cuda()
            self.decoder.cuda()
        
        # tokenizer
        idx, mask = self.tokenize(smiles)
        
        ###########
        # Encoder #
        ###########
        # encoder forward
        x = self.encoder.tok_emb(idx) # each index maps to a (learnable) vector
        x = self.encoder.drop(x)
        x = self.encoder.blocks(x, length_mask=LengthMask(mask.sum(-1)))

        # mean pooling
        token_embeddings = x
        input_mask_expanded = mask.unsqueeze(-1).expand(token_embeddings.size()).float()
        sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1)
        sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9)
        true_set = sum_embeddings / sum_mask # DO NOT USE THIS FOR DOWNSTREAM TASKS, USE `pred_set` INSTEAD

        # add padding
        mask_embeddings = (token_embeddings * input_mask_expanded)
        token_embeddings = F.pad(mask_embeddings, pad=(0, 0, 0, self.max_len - mask_embeddings.shape[1]), value=0)
        idx = F.pad(idx, pad=(0, self.max_len - idx.shape[1], 0, 0), value=2)

        true_ids = idx
        true_cte = token_embeddings
        true_cte = true_cte.view(-1, self.max_len*self.n_embd)

        ###########
        # Decoder #
        ###########
        # CTE autoencoder
        pred_set = self.decoder.autoencoder.encoder(true_cte)
        pred_cte = self.decoder.autoencoder.decoder(pred_set)

        # reconstruct tokens
        pred_ids = self.decoder.lang_model(pred_cte.view(-1, self.max_len, self.n_embd))
        pred_ids = torch.argmax(pred_ids, axis=-1)
        
        return ((true_ids, pred_ids), # tokens
               (true_cte, pred_cte),  # token embeddings
               (true_set, pred_set))  # smiles embeddings

    def extract_embeddings(self, smiles):
        """Extract token and SMILES embeddings."""
        # evaluation mode
        self.encoder.eval()
        if self.is_cuda_available:
            self.encoder.cuda()
        
        # tokenizer
        idx, mask = self.tokenize(smiles)
        
        # encoder forward
        token_embeddings = self.encoder(idx, mask)

        # aggregate token embeddings (similar to mean pooling)
        # CAUTION: use the embeddings from the autoencoder.
        smiles_embeddings = self.decoder.autoencoder.encoder(token_embeddings.view(-1, self.max_len*self.n_embd))

        # add padding
        idx = F.pad(idx, pad=(0, self.max_len - idx.shape[1], 0, 0), value=self.padding_idx)

        return idx, token_embeddings, smiles_embeddings
    
    def encode(self, smiles, useCuda=False, batch_size=100, return_torch=False):
        """Extract efficiently SMILES embeddings per batches."""
        # TODO: remove useCuda argument

        # handle single str or a list of str
        smiles = pd.Series(smiles) if isinstance(smiles, str) else pd.Series(list(smiles))
        n_split = smiles.shape[0] // batch_size if smiles.shape[0] >= batch_size else smiles.shape[0]
        
        # process in batches
        embeddings = [
            self.extract_embeddings(list(batch))[2].cpu().detach().numpy() 
                for batch in tqdm(np.array_split(smiles, n_split))
        ]
        flat_list = [item for sublist in embeddings for item in sublist]

        # clear GPU memory
        if self.is_cuda_available:
            torch.cuda.empty_cache()
            gc.collect()

        if return_torch:
            return torch.tensor(np.array(flat_list))
        return pd.DataFrame(flat_list)
    
    def decode(self, smiles_embeddings):
        """Decode SMILES embeddings back to SMILES."""
        # evaluation mode
        self.decoder.eval()
        if self.is_cuda_available:
            self.decoder.cuda()

        # reconstruct token embeddings
        pred_token_embds = self.decoder.autoencoder.decoder(smiles_embeddings)

        # reconstruct tokens
        pred_idx = self.decoder.lang_model(pred_token_embds.view(-1, self.max_len, self.n_embd))
        pred_idx = torch.argmax(pred_idx, axis=-1).cpu().detach().numpy()

        # convert idx to tokens
        pred_smiles = []
        for i in range(pred_idx.shape[0]):
            idx = pred_idx[i]
            smiles = self.tokenizer.idx_to_smiles(self, idx)
            smiles = smiles.replace('<bos>', '') # begin token
            smiles = smiles.replace('<eos>', '') # end token
            smiles = smiles.replace('<pad>', '') # pad token
            pred_smiles.append(smiles)

        # clear GPU memory
        if self.is_cuda_available:
            torch.cuda.empty_cache()
            gc.collect()

        return pred_smiles

    def __str__(self):
        return 'smi-ted-Light'
    

def load_smi_ted(folder="./smi_ted_light", 
              ckpt_filename="smi-ted-Light_40.pt",
              vocab_filename="bert_vocab_curated.txt"
              ):
    tokenizer = MolTranBertTokenizer(os.path.join(folder, vocab_filename))
    model = Smi_ted(tokenizer)
    model.load_checkpoint(os.path.join(folder, ckpt_filename))
    model.eval()
    print('Vocab size:', len(tokenizer.vocab))
    print(f'[INFERENCE MODE - {str(model)}]')
    return model