File size: 10,507 Bytes
02e480f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
import regex as re
import torch
import numpy as np
import random
import collections
class Encoder():
def __init__(self, max_length=500, add_bos=True, add_eos=True, feature_size=32):
self.vocab_encoder = torch.load('pubchem_canon_zinc_final_vocab_sorted_curated.pth')
self.max_length = max_length
self.min_length = 1
self.mod_length = 42
self.mlm_probability = .15
self.avg_length = 66
self.tail = 122
self.b0_cache=collections.deque()
self.b1_cache=collections.deque()
self.b2_cache=collections.deque()
self.b3_cache=collections.deque()
self.bucket0=collections.deque()
self.bucket1=collections.deque()
self.bucket2=collections.deque()
self.bucket3=collections.deque()
if feature_size == 32:
self.b0_max=1100
self.b1_max=700
self.b2_max=150
self.b3_max=50
else:
self.b0_max=1382
self.b1_max=871
self.b2_max=516
self.b3_max=311
values = list(self.vocab_encoder.values())
num_top = 0
middle_top = 0
bottom = 0
for count in values:
if count > 100000:
num_top += 1
if count > 50:
middle_top += 1
middle_top = middle_top - num_top
self.cutoffs = [num_top+4, middle_top]
self.char2id = {"<bos>":0, "<eos>":1, "<pad>":2, "<mask>":3}
self.id2char = {0:"<bos>", 1:"<eos>", 2:"<pad>", 3:"<mask>"}
self.pad = self.char2id['<pad>']
self.mask = self.char2id['<mask>']
self.eos = self.char2id['<eos>']
self.bos = self.char2id['<bos>']
pos = 0
for key, value in self.vocab_encoder.items():
#for pos, key in enumerate(self.vocab_encoder.keys()):
self.char2id[key] = pos+4
self.id2char[pos+4] = key
pos += 1
self.char2id["<unk>"] = pos + 4
self.id2char[pos+4] = "<unk>"
self.pattern = "(\[[^\]]+]|Br?|Cl?|N|O|S|P|F|I|b|c|n|o|s|p|\(|\)|\.|=|#|-|\+|\\\\|\/|:|~|@|\?|>|\*|\$|\%[0-9]{2}|[0-9])"
self.regex = re.compile(self.pattern)
self.add_bos = add_bos
self.add_eos = add_eos
#print(self.char2id)
def encode(self, char):
#if len(char) > self.max_length:
# char = char[:self.max_length]
if self.add_bos == True:
char = ['<bos>'] + char
if self.add_eos == True:
char = char + ['<eos>']
return torch.tensor([self.char2id[word] for word in char])
def encoder(self, tokens):
#return *map(lambda x: self.encode(x), tokens)
return [self.encode(mol) for mol in tokens]
def process_text(self, text):
#print(text)
#random length sequences seems to help training
mod_length = self.mod_length #+ random.randint(-1, 3)
avg_length = self.avg_length #+ random.randint(-3, 5)
for mol in text:
#fill up buckets and caches
if '\n' in mol['text']:
print('carriage return in mol')
raw_regex = self.regex.findall(mol['text'].strip('\n'))
length = len(raw_regex)
if length > self.min_length and length < mod_length:
if len(self.bucket0) < self.b0_max:
self.bucket0.append(raw_regex)
else:
self.b0_cache.append(raw_regex)
elif length >= mod_length and length < avg_length:
if len(self.bucket1) < self.b1_max:
self.bucket1.append(raw_regex)
else:
self.b1_cache.append(raw_regex)
elif length >= avg_length and length < self.tail:
if len(self.bucket2) < self.b2_max:
self.bucket2.append(raw_regex)
else:
self.b2_cache.append(raw_regex)
elif length >= self.tail and length < self.max_length:
if len(self.bucket3) < self.b3_max:
self.bucket3.append(raw_regex)
else:
self.b3_cache.append(raw_regex)
# elif length >= avg_length and length < self.tail:
# self.b2_cache.append(raw_regex)
# #if len(bucket2) < self.b2_max:
# # bucket2.append(raw_regex)
# #else:
# # self.b2_cache.append(raw_regex)
# elif length >= self.tail and length < self.max_length:
# self.b3_cache.append(raw_regex)
# #if len(bucket3) < self.b3_max:
# # bucket3.append(raw_regex)
# #else:
# # self.b3_cache.append(raw_regex)
#print('before Cache size {} {} {} {}'.format(len(self.b0_cache), len(self.b1_cache), len(self.b2_cache), len(self.b3_cache)))
#pour cache elements into any open bucket
if len(self.bucket0) < self.b0_max and len(self.b0_cache) > 0:
cache_size = len(self.b0_cache)
max_margin = self.b0_max-len(self.bucket0)
range0 = min(cache_size, max_margin)
outbucket0 = [self.bucket0.pop() for item in range(len(self.bucket0))] + [self.b0_cache.pop() for i in range(range0)]
#self.b0_cache = collections.deque(self.b0_cache[:self.b0_max-len(bucket0)])
#print('0 type {}'.format(type(self.b0_cache)))
else:
outbucket0 = [self.bucket0.pop() for item in range(len(self.bucket0))]
if len(self.bucket1) < self.b1_max and len(self.b1_cache) > 0:
cache_size = len(self.b1_cache)
max_margin = self.b1_max-len(self.bucket1)
range1 = min(cache_size, max_margin)
outbucket1 = [self.bucket1.pop() for item in range(len(self.bucket1))] + [self.b1_cache.pop() for i in range(range1)]
else:
outbucket1 = [self.bucket1.pop() for item in range(len(self.bucket1))]
if len(self.bucket2) < self.b2_max and len(self.b2_cache) > 0:
cache_size = len(self.b2_cache)
max_margin = self.b2_max-len(self.bucket2)
range2 = min(cache_size, max_margin)
outbucket2 = [self.bucket2.pop() for item in range(len(self.bucket2))] + [self.b2_cache.pop() for i in range(range2)]
else:
outbucket2 = [self.bucket2.pop() for item in range(len(self.bucket2))]
if len(self.bucket3) < self.b3_max and len(self.b3_cache) > 0:
cache_size = len(self.b3_cache)
max_margin = self.b3_max-len(self.bucket3)
range3 = min(cache_size, max_margin)
outbucket3 = [self.bucket3.pop() for item in range(len(self.bucket3))] + [self.b3_cache.pop() for i in range(range3)]
else:
outbucket3 = [self.bucket3.pop() for item in range(len(self.bucket3))]
# if len(self.b2_cache) > self.b2_max:
# cache_size = len(self.b2_cache)
# max_margin = self.b2_max
# range2 = min(cache_size, max_margin)
# outbucket2 = [self.b2_cache.pop() for i in range(range2)]
# else:
# outbucket2=[]
# if len(self.b3_cache) > self.b3_max:
# cache_size = len(self.b3_cache)
# max_margin = self.b3_max
# range3 = min(cache_size, max_margin)
# outbucket3 = [self.b3_cache.pop() for i in range(range3)]
# else:
# outbucket3 = []
return outbucket0, outbucket1, outbucket2, outbucket3
def mask_tokens( self, inputs, special_tokens_mask= None):
"""
Prepare masked tokens inputs/labels for masked language modeling: 80% MASK, 10% random, 10% original.
"""
labels = inputs.clone()
# We sample a few tokens in each sequence for MLM training (with probability `self.mlm_probability`)
probability_matrix = torch.full(labels.size(), self.mlm_probability)
if special_tokens_mask is None:
special_tokens_mask = [
self.tokenizer.get_special_tokens_mask(val, already_has_special_tokens=True) for val in labels.tolist()
]
special_tokens_mask = torch.tensor(special_tokens_mask, dtype=torch.bool)
else:
special_tokens_mask = torch.tensor(special_tokens_mask, dtype=torch.bool)
#special_tokens_mask = special_tokens_mask.bool()
#print(special_tokens_mask.size())
probability_matrix.masked_fill_(special_tokens_mask, value=0.0)
masked_indices = torch.bernoulli(probability_matrix).bool()
labels[~masked_indices] = -100 # We only compute loss on masked tokens
# 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK])
indices_replaced = torch.bernoulli(torch.full(labels.size(), 0.8)).bool() & masked_indices
inputs[indices_replaced] = self.mask
# 10% of the time, we replace masked input tokens with random word
indices_random = torch.bernoulli(torch.full(labels.size(), 0.5)).bool() & masked_indices & ~indices_replaced
random_words = torch.randint(len(self.char2id.keys()), labels.size(), dtype=torch.long)
inputs[indices_random] = random_words[indices_random]
# The rest of the time (10% of the time) we keep the masked input tokens unchanged
return inputs, labels
def pack_tensors(self, tokens):
array_ids = self.encoder(tokens)
array = torch.nn.utils.rnn.pad_sequence(array_ids, batch_first=True, padding_value=self.pad)
lengths = (array!=self.pad).sum(dim=-1)
#Bert tokenization
special_token_mask = [list(map(lambda x: 1 if x in [self.bos, self.eos, self.pad] else 0, stuff)) for stuff in array.tolist()]
masked_array, masked_labels = self.mask_tokens(array, special_token_mask)
return masked_array, masked_labels, array_ids, lengths
def process(self, text):
arrays = []
lengths = []
targets = []
arrays_ids = []
for tokens in self.process_text(text):
if len(tokens) > 0:
array, target, array_ids, lgt = self.pack_tensors(tokens)
arrays.append(array)
targets.append(target)
arrays_ids.append(array_ids)
lengths.append(lgt)
return arrays, targets, arrays_ids, lengths
if __name__ == '__main__':
text_encoder = Encoder()
|