File size: 10,507 Bytes
02e480f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import regex as re
import torch
import numpy as np
import random
import collections

class Encoder():

    def __init__(self, max_length=500, add_bos=True, add_eos=True, feature_size=32):
        self.vocab_encoder = torch.load('pubchem_canon_zinc_final_vocab_sorted_curated.pth')

        self.max_length = max_length
        self.min_length = 1
        self.mod_length = 42
        self.mlm_probability = .15
        self.avg_length = 66
        self.tail = 122
        self.b0_cache=collections.deque()
        self.b1_cache=collections.deque()
        self.b2_cache=collections.deque()
        self.b3_cache=collections.deque()
        self.bucket0=collections.deque()
        self.bucket1=collections.deque()
        self.bucket2=collections.deque()
        self.bucket3=collections.deque()
        if feature_size == 32:
            self.b0_max=1100
            self.b1_max=700
            self.b2_max=150
            self.b3_max=50
        else:
            self.b0_max=1382
            self.b1_max=871
            self.b2_max=516
            self.b3_max=311
        values = list(self.vocab_encoder.values())
        num_top = 0
        middle_top = 0
        bottom = 0
        for  count in values:
            if count > 100000:
                num_top += 1
            if count > 50:
                middle_top += 1
        middle_top = middle_top - num_top
        self.cutoffs = [num_top+4, middle_top]
        self.char2id = {"<bos>":0, "<eos>":1, "<pad>":2, "<mask>":3}
        self.id2char = {0:"<bos>", 1:"<eos>", 2:"<pad>", 3:"<mask>"}
        self.pad  = self.char2id['<pad>']
        self.mask = self.char2id['<mask>']
        self.eos  = self.char2id['<eos>']
        self.bos  = self.char2id['<bos>']
        pos = 0
        for key, value in self.vocab_encoder.items():
        #for pos, key in enumerate(self.vocab_encoder.keys()):
            self.char2id[key] = pos+4
            self.id2char[pos+4] = key
            pos += 1
        self.char2id["<unk>"] = pos + 4
        self.id2char[pos+4] = "<unk>"
        self.pattern =  "(\[[^\]]+]|Br?|Cl?|N|O|S|P|F|I|b|c|n|o|s|p|\(|\)|\.|=|#|-|\+|\\\\|\/|:|~|@|\?|>|\*|\$|\%[0-9]{2}|[0-9])"
        self.regex = re.compile(self.pattern)
        self.add_bos = add_bos
        self.add_eos = add_eos
        #print(self.char2id)

    def encode(self, char):
        #if len(char) > self.max_length:
        #    char = char[:self.max_length]
        if self.add_bos == True:
            char = ['<bos>'] + char
        if self.add_eos == True:
            char = char + ['<eos>']

        return torch.tensor([self.char2id[word] for word in char])

    def encoder(self, tokens):
        #return *map(lambda x: self.encode(x), tokens)
        return [self.encode(mol) for mol in tokens]

    def process_text(self, text):
        #print(text)
        #random length sequences seems to help training
        mod_length = self.mod_length #+ random.randint(-1, 3)
        avg_length = self.avg_length #+ random.randint(-3, 5)
        for mol in text:
            #fill up buckets and caches
            if '\n' in mol['text']:
                print('carriage return in mol')
            raw_regex = self.regex.findall(mol['text'].strip('\n'))
            length = len(raw_regex)
            if length > self.min_length and length < mod_length:
                if len(self.bucket0) < self.b0_max:
                    self.bucket0.append(raw_regex)
                else:
                    self.b0_cache.append(raw_regex)
            elif length >= mod_length and length < avg_length:
                if len(self.bucket1) < self.b1_max:
                    self.bucket1.append(raw_regex)
                else:
                    self.b1_cache.append(raw_regex)
            elif length >= avg_length and length < self.tail:
                if len(self.bucket2) < self.b2_max:
                   self.bucket2.append(raw_regex)
                else:
                   self.b2_cache.append(raw_regex)
            elif length >= self.tail and length < self.max_length:
                if len(self.bucket3) < self.b3_max:
                   self.bucket3.append(raw_regex)
                else:
                   self.b3_cache.append(raw_regex)
            # elif length >= avg_length and length < self.tail:
            #     self.b2_cache.append(raw_regex)
            #     #if len(bucket2) < self.b2_max:
            #     #    bucket2.append(raw_regex)
            #     #else:
            #     #    self.b2_cache.append(raw_regex)
            # elif length >= self.tail and length < self.max_length:
            #     self.b3_cache.append(raw_regex)
            #     #if len(bucket3) < self.b3_max:
            #     #    bucket3.append(raw_regex)
            #     #else:
            #     #    self.b3_cache.append(raw_regex)

        #print('before Cache size  {} {} {} {}'.format(len(self.b0_cache), len(self.b1_cache), len(self.b2_cache), len(self.b3_cache)))
        #pour cache elements into any open bucket
        if len(self.bucket0) < self.b0_max and len(self.b0_cache) > 0:
            cache_size = len(self.b0_cache)
            max_margin = self.b0_max-len(self.bucket0)
            range0 = min(cache_size, max_margin)
            outbucket0 = [self.bucket0.pop() for item in range(len(self.bucket0))] + [self.b0_cache.pop() for i in range(range0)]
            #self.b0_cache =  collections.deque(self.b0_cache[:self.b0_max-len(bucket0)])
            #print('0 type {}'.format(type(self.b0_cache)))
        else:
            outbucket0 = [self.bucket0.pop() for item in range(len(self.bucket0))]

        if len(self.bucket1) < self.b1_max and len(self.b1_cache) > 0:
            cache_size = len(self.b1_cache)
            max_margin = self.b1_max-len(self.bucket1)
            range1 = min(cache_size, max_margin)
            outbucket1 = [self.bucket1.pop() for item in range(len(self.bucket1))] + [self.b1_cache.pop() for i in range(range1)]
        else:
            outbucket1 = [self.bucket1.pop() for item in range(len(self.bucket1))]

        if len(self.bucket2) < self.b2_max and len(self.b2_cache) > 0:
            cache_size = len(self.b2_cache)
            max_margin = self.b2_max-len(self.bucket2)
            range2 = min(cache_size, max_margin)
            outbucket2 = [self.bucket2.pop() for item in range(len(self.bucket2))] + [self.b2_cache.pop() for i in range(range2)]
        else:
            outbucket2 = [self.bucket2.pop() for item in range(len(self.bucket2))]

        if len(self.bucket3) < self.b3_max and len(self.b3_cache) > 0:
            cache_size = len(self.b3_cache)
            max_margin = self.b3_max-len(self.bucket3)
            range3 = min(cache_size, max_margin)
            outbucket3 = [self.bucket3.pop() for item in range(len(self.bucket3))] + [self.b3_cache.pop() for i in range(range3)]
        else:
            outbucket3 = [self.bucket3.pop() for item in range(len(self.bucket3))]

        # if len(self.b2_cache) > self.b2_max:
        #     cache_size = len(self.b2_cache)
        #     max_margin = self.b2_max
        #     range2 = min(cache_size, max_margin)
        #     outbucket2 =  [self.b2_cache.pop() for i in range(range2)]
        # else:
        #     outbucket2=[]

        # if len(self.b3_cache) > self.b3_max:
        #     cache_size = len(self.b3_cache)
        #     max_margin = self.b3_max
        #     range3 = min(cache_size, max_margin)
        #     outbucket3 =  [self.b3_cache.pop() for i in range(range3)]
        # else:
        #     outbucket3 = []

        return outbucket0, outbucket1, outbucket2, outbucket3

    def mask_tokens( self, inputs, special_tokens_mask= None):
        """
        Prepare masked tokens inputs/labels for masked language modeling: 80% MASK, 10% random, 10% original.
        """
        labels = inputs.clone()
        # We sample a few tokens in each sequence for MLM training (with probability `self.mlm_probability`)
        probability_matrix = torch.full(labels.size(), self.mlm_probability)
        if special_tokens_mask is None:
            special_tokens_mask = [
                self.tokenizer.get_special_tokens_mask(val, already_has_special_tokens=True) for val in labels.tolist()
            ]
            special_tokens_mask = torch.tensor(special_tokens_mask, dtype=torch.bool)
        else:
            special_tokens_mask = torch.tensor(special_tokens_mask, dtype=torch.bool)
            #special_tokens_mask = special_tokens_mask.bool()

        #print(special_tokens_mask.size())
        probability_matrix.masked_fill_(special_tokens_mask, value=0.0)
        masked_indices = torch.bernoulli(probability_matrix).bool()
        labels[~masked_indices] = -100  # We only compute loss on masked tokens

        # 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK])
        indices_replaced = torch.bernoulli(torch.full(labels.size(), 0.8)).bool() & masked_indices
        inputs[indices_replaced] = self.mask

        # 10% of the time, we replace masked input tokens with random word
        indices_random = torch.bernoulli(torch.full(labels.size(), 0.5)).bool() & masked_indices & ~indices_replaced
        random_words = torch.randint(len(self.char2id.keys()), labels.size(), dtype=torch.long)
        inputs[indices_random] = random_words[indices_random]

        # The rest of the time (10% of the time) we keep the masked input tokens unchanged
        return inputs, labels
    def pack_tensors(self, tokens):
        array_ids = self.encoder(tokens)
        array =  torch.nn.utils.rnn.pad_sequence(array_ids, batch_first=True, padding_value=self.pad)
        lengths = (array!=self.pad).sum(dim=-1)
        #Bert tokenization
        special_token_mask = [list(map(lambda x: 1 if x in [self.bos, self.eos, self.pad] else 0, stuff)) for stuff in array.tolist()]
        masked_array, masked_labels = self.mask_tokens(array, special_token_mask)
        return masked_array, masked_labels, array_ids, lengths
    def process(self, text):
        arrays = []
        lengths = []
        targets = []
        arrays_ids = []
        for tokens in self.process_text(text):
            if len(tokens) > 0:
                array, target, array_ids, lgt = self.pack_tensors(tokens)
                arrays.append(array)
                targets.append(target)
                arrays_ids.append(array_ids)
                lengths.append(lgt)
        return arrays, targets, arrays_ids, lengths

if __name__ == '__main__':

    text_encoder = Encoder()