File size: 18,731 Bytes
02e480f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 |
# Deep learning
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
from torch.utils.data import DataLoader
from utils import CustomDataset, CustomDatasetMultitask, RMSELoss, normalize_smiles
# Data
import pandas as pd
import numpy as np
# Standard library
import random
import args
import os
from tqdm import tqdm
# Machine Learning
from sklearn.metrics import mean_absolute_error, r2_score, accuracy_score, roc_auc_score, roc_curve, auc, precision_recall_curve
from scipy import stats
from utils import RMSE, sensitivity, specificity
class Trainer:
def __init__(self, raw_data, dataset_name, target, batch_size, hparams,
target_metric='rmse', seed=0, checkpoints_folder='./checkpoints', save_ckpt=True, device='cpu'):
# data
self.df_train = raw_data[0]
self.df_valid = raw_data[1]
self.df_test = raw_data[2]
self.dataset_name = dataset_name
self.target = target
self.batch_size = batch_size
self.hparams = hparams
self._prepare_data()
# config
self.target_metric = target_metric
self.seed = seed
self.checkpoints_folder = checkpoints_folder
self.save_ckpt = save_ckpt
self.device = device
self._set_seed(seed)
def _prepare_data(self):
# normalize dataset
self.df_train['canon_smiles'] = self.df_train['smiles'].apply(normalize_smiles)
self.df_valid['canon_smiles'] = self.df_valid['smiles'].apply(normalize_smiles)
self.df_test['canon_smiles'] = self.df_test['smiles'].apply(normalize_smiles)
self.df_train = self.df_train.dropna(subset=['canon_smiles'])
self.df_valid = self.df_valid.dropna(subset=['canon_smiles'])
self.df_test = self.df_test.dropna(subset=['canon_smiles'])
# create dataloader
self.train_loader = DataLoader(
CustomDataset(self.df_train, self.target),
batch_size=self.batch_size,
shuffle=True,
pin_memory=True
)
self.valid_loader = DataLoader(
CustomDataset(self.df_valid, self.target),
batch_size=self.batch_size,
shuffle=False,
pin_memory=True
)
self.test_loader = DataLoader(
CustomDataset(self.df_test, self.target),
batch_size=self.batch_size,
shuffle=False,
pin_memory=True
)
def compile(self, model, optimizer, loss_fn):
self.model = model
self.optimizer = optimizer
self.loss_fn = loss_fn
self._print_configuration()
def fit(self, max_epochs=500):
best_vloss = 1000
best_vmetric = -1
for epoch in range(1, max_epochs+1):
print(f'\n=====Epoch [{epoch}/{max_epochs}]=====')
# training
self.model.to(self.device)
self.model.train()
train_loss = self._train_one_epoch()
print(f'Training loss: {round(train_loss, 6)}')
# Evaluate the model
self.model.eval()
val_preds, val_loss, val_metrics = self._validate_one_epoch(self.valid_loader)
tst_preds, tst_loss, tst_metrics = self._validate_one_epoch(self.test_loader)
print(f"Valid loss: {round(val_loss, 6)}")
for m in val_metrics.keys():
print(f"[VALID] Evaluation {m.upper()}: {round(val_metrics[m], 4)}")
print("-"*32)
print(f"Test loss: {round(tst_loss, 6)}")
for m in tst_metrics.keys():
print(f"[TEST] Evaluation {m.upper()}: {round(tst_metrics[m], 4)}")
############################### Save Finetune checkpoint #######################################
if (val_loss < best_vloss) and self.save_ckpt:
# remove old checkpoint
if best_vmetric != -1:
os.remove(os.path.join(self.checkpoints_folder, filename))
# filename
model_name = f'{str(self.model)}-Finetune'
metric = round(tst_metrics[self.target_metric], 4)
filename = f"{model_name}_epoch={epoch}_{self.dataset_name}_seed{self.seed}_{self.target_metric}={metric}.pt"
# save checkpoint
print('Saving checkpoint...')
self._save_checkpoint(epoch, filename)
# save predictions
pd.DataFrame(tst_preds).to_csv(
os.path.join(
self.checkpoints_folder,
f'{self.dataset_name}_{self.target if isinstance(self.target, str) else self.target[0]}_predict_test_seed{self.seed}.csv'),
index=False
)
# update best loss
best_vloss = val_loss
best_vmetric = metric
def _train_one_epoch(self):
raise NotImplementedError
def _validate_one_epoch(self, data_loader):
raise NotImplementedError
def _print_configuration(self):
print('----Finetune information----')
print('Dataset:\t', self.dataset_name)
print('Target:\t\t', self.target)
print('Batch size:\t', self.batch_size)
print('LR:\t\t', self._get_lr())
print('Device:\t\t', self.device)
print('Optimizer:\t', self.optimizer.__class__.__name__)
print('Loss function:\t', self.loss_fn.__class__.__name__)
print('Seed:\t\t', self.seed)
print('Train size:\t', self.df_train.shape[0])
print('Valid size:\t', self.df_valid.shape[0])
print('Test size:\t', self.df_test.shape[0])
def _save_checkpoint(self, current_epoch, filename):
if not os.path.exists(self.checkpoints_folder):
os.makedirs(self.checkpoints_folder)
ckpt_dict = {
'MODEL_STATE': self.model.state_dict(),
'EPOCHS_RUN': current_epoch,
'hparams': vars(self.hparams),
'finetune_info': {
'dataset': self.dataset_name,
'target`': self.target,
'batch_size': self.batch_size,
'lr': self._get_lr(),
'device': self.device,
'optim': self.optimizer.__class__.__name__,
'loss_fn': self.loss_fn.__class__.__name__,
'train_size': self.df_train.shape[0],
'valid_size': self.df_valid.shape[0],
'test_size': self.df_test.shape[0],
},
'seed': self.seed,
}
assert list(ckpt_dict.keys()) == ['MODEL_STATE', 'EPOCHS_RUN', 'hparams', 'finetune_info', 'seed']
torch.save(ckpt_dict, os.path.join(self.checkpoints_folder, filename))
def _set_seed(self, value):
random.seed(value)
torch.manual_seed(value)
np.random.seed(value)
if torch.cuda.is_available():
torch.cuda.manual_seed(value)
torch.cuda.manual_seed_all(value)
cudnn.deterministic = True
cudnn.benchmark = False
def _get_lr(self):
for param_group in self.optimizer.param_groups:
return param_group['lr']
class TrainerRegressor(Trainer):
def __init__(self, raw_data, dataset_name, target, batch_size, hparams,
target_metric='rmse', seed=0, checkpoints_folder='./checkpoints', save_ckpt=True, device='cpu'):
super().__init__(raw_data, dataset_name, target, batch_size, hparams,
target_metric, seed, checkpoints_folder, save_ckpt, device)
def _train_one_epoch(self):
running_loss = 0.0
for data in tqdm(self.train_loader):
# Every data instance is an input + label pair
smiles, targets = data
targets = targets.clone().detach().to(self.device)
# zero the parameter gradients (otherwise they are accumulated)
self.optimizer.zero_grad()
# Make predictions for this batch
embeddings = self.model.extract_embeddings(smiles).to(self.device)
outputs = self.model.net(embeddings).squeeze()
# Compute the loss and its gradients
loss = self.loss_fn(outputs, targets)
loss.backward()
# Adjust learning weights
self.optimizer.step()
# print statistics
running_loss += loss.item()
return running_loss / len(self.train_loader)
def _validate_one_epoch(self, data_loader):
data_targets = []
data_preds = []
running_loss = 0.0
with torch.no_grad():
for data in tqdm(data_loader):
# Every data instance is an input + label pair
smiles, targets = data
targets = targets.clone().detach().to(self.device)
# Make predictions for this batch
embeddings = self.model.extract_embeddings(smiles).to(self.device)
predictions = self.model.net(embeddings).squeeze()
# Compute the loss
loss = self.loss_fn(predictions, targets)
data_targets.append(targets.view(-1))
data_preds.append(predictions.view(-1))
# print statistics
running_loss += loss.item()
# Put together predictions and labels from batches
preds = torch.cat(data_preds, dim=0).cpu().numpy()
tgts = torch.cat(data_targets, dim=0).cpu().numpy()
# Compute metrics
mae = mean_absolute_error(tgts, preds)
r2 = r2_score(tgts, preds)
rmse = RMSE(preds, tgts)
spearman = stats.spearmanr(tgts, preds).statistic # scipy 1.12.0
# Rearange metrics
metrics = {
'mae': mae,
'r2': r2,
'rmse': rmse,
'spearman': spearman,
}
return preds, running_loss / len(self.train_loader), metrics
class TrainerClassifier(Trainer):
def __init__(self, raw_data, dataset_name, target, batch_size, hparams,
target_metric='roc-auc', seed=0, checkpoints_folder='./checkpoints', save_ckpt=True, device='cpu'):
super().__init__(raw_data, dataset_name, target, batch_size, hparams,
target_metric, seed, checkpoints_folder, save_ckpt, device)
def _train_one_epoch(self):
running_loss = 0.0
for data in tqdm(self.train_loader):
# Every data instance is an input + label pair
smiles, targets = data
targets = targets.clone().detach().to(self.device)
# zero the parameter gradients (otherwise they are accumulated)
self.optimizer.zero_grad()
# Make predictions for this batch
embeddings = self.model.extract_embeddings(smiles).to(self.device)
outputs = self.model.net(embeddings).squeeze()
# Compute the loss and its gradients
loss = self.loss_fn(outputs, targets.long())
loss.backward()
# Adjust learning weights
self.optimizer.step()
# print statistics
running_loss += loss.item()
return running_loss / len(self.train_loader)
def _validate_one_epoch(self, data_loader):
data_targets = []
data_preds = []
running_loss = 0.0
with torch.no_grad():
for data in tqdm(data_loader):
# Every data instance is an input + label pair
smiles, targets = data
targets = targets.clone().detach().to(self.device)
# Make predictions for this batch
embeddings = self.model.extract_embeddings(smiles).to(self.device)
predictions = self.model.net(embeddings).squeeze()
# Compute the loss
loss = self.loss_fn(predictions, targets.long())
data_targets.append(targets.view(-1))
data_preds.append(predictions)
# print statistics
running_loss += loss.item()
# Put together predictions and labels from batches
preds = torch.cat(data_preds, dim=0).cpu().numpy()
tgts = torch.cat(data_targets, dim=0).cpu().numpy()
# Compute metrics
preds_cpu = F.softmax(torch.tensor(preds), dim=1).cpu().numpy()[:, 1]
# accuracy
y_pred = np.where(preds_cpu >= 0.5, 1, 0)
accuracy = accuracy_score(tgts, y_pred)
# sensitivity
sn = sensitivity(tgts, y_pred)
# specificity
sp = specificity(tgts, y_pred)
# roc-auc
fpr, tpr, _ = roc_curve(tgts, preds_cpu)
roc_auc = auc(fpr, tpr)
# prc-auc
precision, recall, _ = precision_recall_curve(tgts, preds_cpu)
prc_auc = auc(recall, precision)
# Rearange metrics
metrics = {
'acc': accuracy,
'roc-auc': roc_auc,
'prc-auc': prc_auc,
'sensitivity': sn,
'specificity': sp,
}
return preds, running_loss / len(self.train_loader), metrics
class TrainerClassifierMultitask(Trainer):
def __init__(self, raw_data, dataset_name, target, batch_size, hparams,
target_metric='roc-auc', seed=0, checkpoints_folder='./checkpoints', save_ckpt=True, device='cpu'):
super().__init__(raw_data, dataset_name, target, batch_size, hparams,
target_metric, seed, checkpoints_folder, save_ckpt, device)
def _prepare_data(self):
# normalize dataset
self.df_train['canon_smiles'] = self.df_train['smiles'].apply(normalize_smiles)
self.df_valid['canon_smiles'] = self.df_valid['smiles'].apply(normalize_smiles)
self.df_test['canon_smiles'] = self.df_test['smiles'].apply(normalize_smiles)
self.df_train = self.df_train.dropna(subset=['canon_smiles'])
self.df_valid = self.df_valid.dropna(subset=['canon_smiles'])
self.df_test = self.df_test.dropna(subset=['canon_smiles'])
# create dataloader
self.train_loader = DataLoader(
CustomDatasetMultitask(self.df_train, self.target),
batch_size=self.batch_size,
shuffle=True,
pin_memory=True
)
self.valid_loader = DataLoader(
CustomDatasetMultitask(self.df_valid, self.target),
batch_size=self.batch_size,
shuffle=False,
pin_memory=True
)
self.test_loader = DataLoader(
CustomDatasetMultitask(self.df_test, self.target),
batch_size=self.batch_size,
shuffle=False,
pin_memory=True
)
def _train_one_epoch(self):
running_loss = 0.0
for data in tqdm(self.train_loader):
# Every data instance is an input + label pair + mask
smiles, targets, target_masks = data
targets = targets.clone().detach().to(self.device)
# zero the parameter gradients (otherwise they are accumulated)
self.optimizer.zero_grad()
# Make predictions for this batch
embeddings = self.model.extract_embeddings(smiles).to(self.device)
outputs = self.model.net(embeddings, multitask=True).squeeze()
outputs = outputs * target_masks.to(self.device)
# Compute the loss and its gradients
loss = self.loss_fn(outputs, targets)
loss.backward()
# Adjust learning weights
self.optimizer.step()
# print statistics
running_loss += loss.item()
return running_loss / len(self.train_loader)
def _validate_one_epoch(self, data_loader):
data_targets = []
data_preds = []
data_masks = []
running_loss = 0.0
with torch.no_grad():
for data in tqdm(data_loader):
# Every data instance is an input + label pair + mask
smiles, targets, target_masks = data
targets = targets.clone().detach().to(self.device)
# Make predictions for this batch
embeddings = self.model.extract_embeddings(smiles).to(self.device)
predictions = self.model.net(embeddings, multitask=True).squeeze()
predictions = predictions * target_masks.to(self.device)
# Compute the loss
loss = self.loss_fn(predictions, targets)
data_targets.append(targets)
data_preds.append(predictions)
data_masks.append(target_masks)
# print statistics
running_loss += loss.item()
# Put together predictions and labels from batches
preds = torch.cat(data_preds, dim=0)
tgts = torch.cat(data_targets, dim=0)
mask = torch.cat(data_masks, dim=0)
mask = mask > 0
# Compute metrics
roc_aucs = []
prc_aucs = []
sns = []
sps = []
num_tasks = len(self.target)
for idx in range(num_tasks):
actuals_task = torch.masked_select(tgts[:, idx], mask[:, idx].to(self.device))
preds_task = torch.masked_select(preds[:, idx], mask[:, idx].to(self.device))
# accuracy
y_pred = np.where(preds_task.cpu().detach() >= 0.5, 1, 0)
accuracy = accuracy_score(actuals_task.cpu().numpy(), y_pred)
# sensitivity
sn = sensitivity(actuals_task.cpu().numpy(), y_pred)
# specificity
sp = specificity(actuals_task.cpu().numpy(), y_pred)
# roc-auc
roc_auc = roc_auc_score(actuals_task.cpu().numpy(), preds_task.cpu().numpy())
# prc-auc
precision, recall, thresholds = precision_recall_curve(actuals_task.cpu().numpy(), preds_task.cpu().numpy())
prc_auc = auc(recall, precision)
# append
sns.append(sn)
sps.append(sp)
roc_aucs.append(roc_auc)
prc_aucs.append(prc_auc)
average_sn = torch.mean(torch.tensor(sns))
average_sp = torch.mean(torch.tensor(sps))
average_roc_auc = torch.mean(torch.tensor(roc_aucs))
average_prc_auc = torch.mean(torch.tensor(prc_aucs))
# Rearange metrics
metrics = {
'acc': accuracy,
'roc-auc': average_roc_auc.item(),
'prc-auc': average_prc_auc.item(),
'sensitivity': average_sn.item(),
'specificity': average_sp.item(),
}
return preds, running_loss / len(self.train_loader), metrics |