eduardosoares99's picture
Upload 159 files
02e480f verified
raw
history blame
14.3 kB
PATTERN = "(\[[^\]]+]|Br?|Cl?|N|O|S|P|F|I|b|c|n|o|s|p|\(|\)|\.|=|#|-|\+|\\\\|\/|:|~|@|\?|>|\*|\$|\%[0-9]{2}|[0-9])"
# Deep learning
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
# Transformers
from fast_transformers.attention import AttentionLayer
from fast_transformers.events import EventDispatcher, QKVEvent
from fast_transformers.transformers import TransformerEncoder, TransformerEncoderLayer
from fast_transformers.builders.base import BaseBuilder
from fast_transformers.builders.transformer_builders import BaseTransformerEncoderBuilder
from fast_transformers.builders.attention_builders import AttentionBuilder
from fast_transformers.feature_maps import GeneralizedRandomFeatures
from fast_transformers.masking import LengthMask
from transformers import BertTokenizer
# Data
import numpy as np
# Standard library
from functools import partial
import regex as re
import random
class MolTranBertTokenizer(BertTokenizer):
def __init__(self, vocab_file: str = '',
do_lower_case=False,
unk_token='<pad>',
sep_token='<eos>',
pad_token='<pad>',
cls_token='<bos>',
mask_token='<mask>',
**kwargs):
super().__init__(vocab_file,
unk_token=unk_token,
sep_token=sep_token,
pad_token=pad_token,
cls_token=cls_token,
mask_token=mask_token,
**kwargs)
self.regex_tokenizer = re.compile(PATTERN)
self.wordpiece_tokenizer = None
self.basic_tokenizer = None
def _tokenize(self, text):
split_tokens = self.regex_tokenizer.findall(text)
return split_tokens
def convert_idx_to_tokens(self, idx_tensor):
tokens = [self.convert_ids_to_tokens(idx) for idx in idx_tensor.tolist()]
return tokens
def convert_tokens_to_string(self, tokens):
stopwords = ['<bos>', '<eos>']
clean_tokens = [word for word in tokens if word not in stopwords]
out_string = ''.join(clean_tokens)
return out_string
## Transformer layers
class RotaryEmbedding(torch.nn.Module):
def __init__(self, dim, base=10000):
super().__init__()
inv_freq = 1. / (base ** (torch.arange(0, dim, 2).float() / dim))
self.register_buffer('inv_freq', inv_freq)
self.seq_len_cached = 0
self.cos_cached = None
self.sin_cached = None
def forward(self, x, seq_dim=1):
seq_len = x.shape[seq_dim]
if seq_len != self.seq_len_cached:
self.seq_len_cached = seq_len
t = torch.arange(x.shape[seq_dim], device=x.device).type_as(self.inv_freq)
freqs = torch.einsum('i,j->ij', t, self.inv_freq)
emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
self.cos_cached = emb.cos()[None,:, None, :]
self.sin_cached = emb.sin()[None,:, None, :]
return self.cos_cached, self.sin_cached
def rotate_half(x):
x1, x2 = x[..., :x.shape[-1] // 2], x[..., x.shape[-1] // 2:]
return torch.cat((-x2, x1), dim=x1.ndim - 1) # dim=-1 triggers a bug in earlier torch versions
@torch.jit.script
def apply_rotary_pos_emb(q, k, cos, sin):
return (q * cos) + (rotate_half(q) * sin), (k * cos) + (rotate_half(k) * sin)
class RotateAttentionLayer(AttentionLayer):
"""Rotate attention layer inherits from fast_transformer attention layer.
The only thing added is an Embedding encoding, for more information
on the attention layer see the fast_transformers code
"""
def __init__(self, attention, d_model, n_heads, d_keys=None,
d_values=None, event_dispatcher=""):
super(RotateAttentionLayer, self).__init__(attention,d_model, n_heads, d_keys=d_keys,
d_values=d_values, event_dispatcher=event_dispatcher)
self.rotaryemb = RotaryEmbedding(d_keys)
print('Using Rotation Embedding')
def forward(self, queries, keys, values, attn_mask, query_lengths,
key_lengths):
"""
Using the same frame work as the fast_Transformers attention layer
but injecting rotary information to the queries and the keys
after the keys and queries are projected.
In the argument description we make use of the following sizes
- N: the batch size
- L: The maximum length of the queries
- S: The maximum length of the keys (the actual length per sequence
is given by the length mask)
- D: The input feature dimensionality passed in the constructor as
'd_model'
Arguments
---------
queries: (N, L, D) The tensor containing the queries
keys: (N, S, D) The tensor containing the keys
values: (N, S, D) The tensor containing the values
attn_mask: An implementation of BaseMask that encodes where each
query can attend to
query_lengths: An implementation of BaseMask that encodes how
many queries each sequence in the batch consists of
key_lengths: An implementation of BaseMask that encodes how
many queries each sequence in the batch consists of
Returns
-------
The new value for each query as a tensor of shape (N, L, D).
"""
# Extract the dimensions into local variables
N, L, _ = queries.shape
_, S, _ = keys.shape
H = self.n_heads
# Project the queries/keys/values
queries = self.query_projection(queries).view(N, L, H, -1)
keys = self.key_projection(keys).view(N, S, H, -1)
cos, sin = self.rotaryemb(queries)
queries, keys = apply_rotary_pos_emb(queries, keys, cos, sin)
values = self.value_projection(values).view(N, S, H, -1)
# Let the world know of the qkv
self.event_dispatcher.dispatch(QKVEvent(self, queries, keys, values))
# Compute the attention
new_values = self.inner_attention(
queries,
keys,
values,
attn_mask,
query_lengths,
key_lengths
).view(N, L, -1)
# Project the output and return
return self.out_projection(new_values)
class RotateEncoderBuilder(BaseTransformerEncoderBuilder):
"""Build a batch transformer encoder with Relative Rotary embeddings
for training or processing of sequences all elements at a time.
Example usage:
builder = RotateEncoderBuilder()
builder.n_layers = 12
builder.n_heads = 8
builder.feed_forward_dimensions = 1024
builder.query_dimensions = 64
builder.value_dimensions = 64
builder.dropout = 0.1
builder.attention_dropout = 0.1
builder.attention_type = "linear"
transformer = builder.get()
"""
def _get_attention_builder(self):
"""Return an instance of the appropriate attention builder."""
return AttentionBuilder()
def _get_attention_layer_class(self):
"""Return the class for the layer that projects queries keys and
values."""
return RotateAttentionLayer
def _get_encoder_class(self):
"""Return the class for the transformer encoder."""
return TransformerEncoder
def _get_encoder_layer_class(self):
"""Return the class for the transformer encoder layer."""
return TransformerEncoderLayer
class AutoEncoderLayer(nn.Module):
def __init__(self, feature_size, latent_size):
super().__init__()
self.encoder = self.Encoder(feature_size, latent_size)
self.decoder = self.Decoder(feature_size, latent_size)
class Encoder(nn.Module):
def __init__(self, feature_size, latent_size):
super().__init__()
self.is_cuda_available = torch.cuda.is_available()
self.fc1 = nn.Linear(feature_size, latent_size)
self.ln_f = nn.LayerNorm(latent_size)
self.lat = nn.Linear(latent_size, latent_size, bias=False)
def forward(self, x):
if self.is_cuda_available:
self.fc1.cuda()
self.ln_f.cuda()
self.lat.cuda()
x = x.cuda()
x = F.gelu(self.fc1(x))
x = self.ln_f(x)
x = self.lat(x)
return x # -> (N, D)
class Decoder(nn.Module):
def __init__(self, feature_size, latent_size):
super().__init__()
self.is_cuda_available = torch.cuda.is_available()
self.fc1 = nn.Linear(latent_size, latent_size)
self.ln_f = nn.LayerNorm(latent_size)
self.rec = nn.Linear(latent_size, feature_size, bias=False)
def forward(self, x):
if self.is_cuda_available:
self.fc1.cuda()
self.ln_f.cuda()
self.rec.cuda()
x = x.cuda()
x = F.gelu(self.fc1(x))
x = self.ln_f(x)
x = self.rec(x)
return x # -> (N, L*D)
class LangLayer(nn.Module):
def __init__(self, n_embd, n_vocab):
super().__init__()
self.is_cuda_available = torch.cuda.is_available()
self.embed = nn.Linear(n_embd, n_embd)
self.ln_f = nn.LayerNorm(n_embd)
self.head = nn.Linear(n_embd, n_vocab, bias=False)
def forward(self, tensor):
if self.is_cuda_available:
self.embed.cuda()
self.ln_f.cuda()
self.head.cuda()
tensor = tensor.cuda()
tensor = self.embed(tensor)
tensor = F.gelu(tensor)
tensor = self.ln_f(tensor)
tensor = self.head(tensor)
return tensor
class MoLEncoder(nn.Module):
def __init__(self, config, n_vocab):
super(MoLEncoder, self).__init__()
# embeddings
self.tok_emb = nn.Embedding(n_vocab, config.n_embd)
self.drop = nn.Dropout(config.d_dropout)
# transformer
builder = RotateEncoderBuilder.from_kwargs(
n_layers=config.n_layer,
n_heads=config.n_head,
query_dimensions=config.n_embd//config.n_head,
value_dimensions=config.n_embd//config.n_head,
feed_forward_dimensions=config.n_embd,
attention_type='linear',
# unless we do deterministic_eval here, we will have random outputs
feature_map=partial(GeneralizedRandomFeatures,
n_dims=config.num_feats,
deterministic_eval=False),
activation='gelu'
)
self.blocks = builder.get()
# classification
self.lang_model = LangLayer(config.n_embd, n_vocab)
def forward(self, idx, mask=None, inference=False):
if not inference:
x = self.tok_emb(idx) # each index maps to a (learnable) vector
x = self.drop(x)
#masking of the length of the inputs its handled in the Masked language part of the code
#do not attempt to handle it in the forward of the transformer
x = self.blocks(x)
logits = self.lang_model(x)
return logits
else:
x = self.tok_emb(idx) # each index maps to a (learnable) vector
x = self.drop(x)
#masking of the length of the inputs its handled in the Masked language part of the code
#do not attempt to handle it in the forward of the transformer
x = self.blocks(x, length_mask=LengthMask(mask.sum(-1), max_len=idx.shape[1]))
# mean pooling
token_embeddings = x
input_mask_expanded = mask.unsqueeze(-1).expand(token_embeddings.size()).float()
sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1)
sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9)
true_set = sum_embeddings / sum_mask
return true_set, token_embeddings
class MoLDecoder(nn.Module):
def __init__(self, n_vocab, max_len, n_embd, n_gpu=None):
super(MoLDecoder, self).__init__()
self.max_len = max_len
self.n_embd = n_embd
self.n_gpu = n_gpu
self.autoencoder = AutoEncoderLayer(n_embd*max_len, n_embd)
self.lang_model = LangLayer(n_embd, n_vocab)
def forward(self, token_embeddings):
pred_set = self.autoencoder.encoder(token_embeddings) # (N, D)
pred_cte = self.autoencoder.decoder(pred_set) # (N, L*D)
pred_ids = self.lang_model(pred_cte.view(-1, self.max_len, self.n_embd))
return pred_set, pred_ids
class Smi_ted(nn.Module):
"""materials.smi-ted-Light 289M Parameters"""
def __init__(self, config, vocab):
super(Smi_ted, self).__init__()
self.config = config
self.padding_idx = 2
self.is_cuda_available = torch.cuda.is_available()
n_vocab = len(vocab.keys())
print(n_vocab, config.n_embd)
self.encoder = MoLEncoder(config, n_vocab)
self.decoder = MoLDecoder(n_vocab, config.max_len, config.n_embd)
self._set_seed(config.seed)
print('Vocab size:', n_vocab)
print(f'[PRE-TRAINING MODE - {str(self)}]')
def _init_weights(self, module):
if isinstance(module, (nn.Linear, nn.Embedding)):
module.weight.data.normal_(mean=0.0, std=0.02)
if isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
def _set_seed(self, value):
print('Random Seed:', value)
random.seed(value)
torch.manual_seed(value)
torch.cuda.manual_seed(value)
torch.cuda.manual_seed_all(value)
np.random.seed(value)
cudnn.deterministic = True
cudnn.benchmark = False
def __str__(self):
return 'smi-ted-Light'