|
import argparse |
|
|
|
|
|
def get_parser(parser=None): |
|
if parser is None: |
|
parser = argparse.ArgumentParser() |
|
|
|
|
|
|
|
parser.add_argument("--n_head", type=int, default=8, help="GPT number of heads") |
|
parser.add_argument("--n_layer", type=int, default=12, help="GPT number of layers") |
|
parser.add_argument( |
|
"--q_dropout", type=float, default=0.5, help="Encoder layers dropout" |
|
) |
|
parser.add_argument( |
|
"--d_dropout", type=float, default=0.1, help="Decoder layers dropout" |
|
) |
|
parser.add_argument( |
|
"--n_embd", type=int, default=768, help="Latent vector dimensionality" |
|
) |
|
parser.add_argument( |
|
"--fc_h", type=int, default=512, help="Fully connected hidden dimensionality" |
|
) |
|
parser.add_argument("--n_output", type=int, default=1) |
|
|
|
|
|
|
|
parser.add_argument("--n_batch", type=int, default=512, help="Batch size") |
|
parser.add_argument( |
|
"--unlike_alpha", type=float, default=1.0, help="unlikelihood loss alpha weight" |
|
) |
|
parser.add_argument( |
|
"--from_scratch", |
|
action="store_true", |
|
default=False, |
|
help="train on qm9 from scratch", |
|
) |
|
parser.add_argument( |
|
"--unlikelihood", |
|
action="store_true", |
|
default=False, |
|
help="use unlikelihood loss with gpt pretrain", |
|
) |
|
parser.add_argument( |
|
"--grad_acc", |
|
type=int, |
|
default=1, |
|
help="number of batches to accumulate gradients", |
|
) |
|
parser.add_argument( |
|
"--checkpoint_every", |
|
type=int, |
|
default=1000, |
|
help="save checkpoint every x iterations", |
|
) |
|
parser.add_argument( |
|
"--clip_grad", type=int, default=50, help="Clip gradients to this value" |
|
) |
|
parser.add_argument( |
|
"--lr_start", type=float, default=3 * 1e-4, help="Initial lr value" |
|
) |
|
parser.add_argument( |
|
"--lr_end", type=float, default=3 * 1e-4, help="Maximum lr weight value" |
|
) |
|
parser.add_argument( |
|
"--lr_multiplier", type=int, default=1, help="lr weight multiplier" |
|
) |
|
parser.add_argument( |
|
"--n_last", type=int, default=1000, help="Number of iters to smooth loss calc" |
|
) |
|
parser.add_argument("--n_jobs", type=int, default=1, help="Number of threads") |
|
parser.add_argument( |
|
"--accelerator", |
|
type=str, |
|
default="ddp", |
|
help="The accelerator backend to use (previously known as distributed_backend)", |
|
) |
|
parser.add_argument( |
|
"--num_nodes", |
|
type=int, |
|
default=1, |
|
help="number of GPU nodes for distributed training", |
|
) |
|
parser.add_argument( |
|
"--device", |
|
type=str, |
|
default="cuda", |
|
help='Device to run: "cpu" or "cuda:<device number>"', |
|
) |
|
parser.add_argument("--seed", type=int, default=12345, help="Seed") |
|
parser.add_argument( |
|
"--init_params_from", |
|
type=str, |
|
default="", |
|
help="Path to a ckpt used to initialize the parameters if no restart_path is provided", |
|
) |
|
parser.add_argument( |
|
"--train_decoder_every", |
|
type=int, |
|
default=10, |
|
help="Optimize decoder params every n batches", |
|
) |
|
parser.add_argument( |
|
"--lr_decoder", type=float, default=1e-4, help="Learning rate for decoder part" |
|
) |
|
parser.add_argument( |
|
"--local_rank", |
|
type=int, |
|
default=-1, |
|
help="local_rank for distributed training on gpus", |
|
) |
|
parser.add_argument("--gpu", default=None, type=int, help="GPU id to use.") |
|
parser.add_argument( |
|
"--dist-backend", default="nccl", type=str, help="distributed backend" |
|
) |
|
parser.add_argument( |
|
"--tensorboard_path", default="./runs/deepspeed", help="tensorboard log dir" |
|
) |
|
|
|
|
|
parser.add_argument( |
|
"--vocab_load", type=str, required=False, help="Where to load the vocab" |
|
) |
|
parser.add_argument( |
|
"--n_samples", type=int, required=False, help="Number of samples to sample" |
|
) |
|
parser.add_argument( |
|
"--gen_save", type=str, required=False, help="Where to save the gen molecules" |
|
) |
|
parser.add_argument( |
|
"--max_len", type=int, default=100, help="Max of length of SMILES" |
|
) |
|
parser.add_argument( |
|
"--train_load", type=str, required=False, help="Where to load the model" |
|
) |
|
parser.add_argument( |
|
"--val_load", type=str, required=False, help="Where to load the model" |
|
) |
|
parser.add_argument( |
|
"--n_workers", |
|
type=int, |
|
required=False, |
|
default=1, |
|
help="Where to load the model", |
|
) |
|
|
|
parser.add_argument( |
|
"--beam_size", type=int, default=0, help="Number of beams to generate" |
|
) |
|
parser.add_argument( |
|
"--num_seq_returned", |
|
type=int, |
|
default=0, |
|
help="number of beams to be returned (must be <= beam_size", |
|
) |
|
parser.add_argument( |
|
"--min_len", type=int, default=1, help="minimum length to be generated" |
|
) |
|
parser.add_argument( |
|
"--nucleus_thresh", type=float, default=0.9, help="nucleus sampling threshold" |
|
) |
|
parser.add_argument( |
|
"--finetune_path", |
|
type=str, |
|
default="", |
|
help="path to trainer file to continue training", |
|
) |
|
parser.add_argument( |
|
"--restart_path", |
|
type=str, |
|
default="", |
|
help="path to trainer file to continue training", |
|
) |
|
parser.add_argument( |
|
"--data_path", type=str, default="", help="path to pubchem file" |
|
) |
|
parser.add_argument( |
|
"--pretext_size", type=int, default=0, help="number of k-mers to pretext" |
|
) |
|
parser.add_argument( |
|
"--model_save_dir", |
|
type=str, |
|
required=False, |
|
default="./models_dump/", |
|
help="Where to save the models/log/config/vocab", |
|
) |
|
parser.add_argument( |
|
"--model_save", |
|
type=str, |
|
required=False, |
|
default="model.pt", |
|
help="Where to save the model", |
|
) |
|
|
|
|
|
|
|
parser.add_argument( |
|
"--num_epoch", type=int, default=1, help="number of epochs to train" |
|
) |
|
|
|
|
|
|
|
parser.add_argument( |
|
"--log_file", type=str, required=False, help="Where to save the log" |
|
) |
|
parser.add_argument( |
|
"--tb_loc", |
|
type=str, |
|
required=False, |
|
help="Where to save the tensorflow location", |
|
) |
|
parser.add_argument( |
|
"--config_save", type=str, required=False, help="Where to save the config" |
|
) |
|
parser.add_argument("--vocab_save", type=str, help="Where to save the vocab") |
|
|
|
|
|
parser.add_argument( |
|
"--debug", |
|
default=False, |
|
action="store_true", |
|
help="do not erase cache at end of program", |
|
) |
|
parser.add_argument( |
|
"--fast_dev_run", |
|
default=False, |
|
help="This flag runs a “unit test” by running n if set to n (int) else 1 if set to True training and validation batch(es).", |
|
) |
|
parser.add_argument( |
|
"--freeze_model", |
|
default=False, |
|
action="store_true", |
|
help="freeze weights of bert model during fine tuning", |
|
) |
|
parser.add_argument( |
|
"--resume", default=False, action="store_true", help="Resume from a saved model" |
|
) |
|
parser.add_argument( |
|
"--rotate", |
|
default=False, |
|
action="store_true", |
|
help="use rotational relative embedding", |
|
) |
|
parser.add_argument( |
|
"--model_load", type=str, required=False, help="Where to load the model" |
|
) |
|
parser.add_argument( |
|
"--root_dir", type=str, required=False, default=".", help="location of root dir" |
|
) |
|
parser.add_argument( |
|
"--config_load", type=str, required=False, help="Where to load the config" |
|
) |
|
parser.add_argument( |
|
"--gpus", type=int, required=False, default=1, help="number of gpus to use" |
|
) |
|
|
|
|
|
|
|
|
|
parser.add_argument( |
|
"--model_arch", |
|
type=str, |
|
required=False, |
|
help="used to teack model arch in params", |
|
) |
|
parser.add_argument( |
|
"--eval_every", |
|
type=int, |
|
default=50000, |
|
help="run evaluation every x iterations", |
|
) |
|
parser.add_argument( |
|
"--num_feats", |
|
type=int, |
|
required=False, |
|
default=32, |
|
help="number of random reatures for FAVOR+", |
|
) |
|
parser.add_argument( |
|
"--max_epochs", type=int, required=False, default=1, help="max number of epochs" |
|
) |
|
|
|
|
|
|
|
parser.add_argument( |
|
"--mode", type=str, default="cls", help="type of pooling to use" |
|
) |
|
parser.add_argument("--dataset_length", type=int, default=None, required=False) |
|
parser.add_argument("--num_workers", type=int, default=0, required=False) |
|
parser.add_argument("--dropout", type=float, default=0.1, required=False) |
|
|
|
parser.add_argument( |
|
"--smiles_embedding", |
|
type=str, |
|
default="/dccstor/medscan7/smallmolecule/runs/ba-predictor/small-data/embeddings/protein/ba_embeddings_tanh_512_2986138_2.pt", |
|
) |
|
|
|
|
|
parser.add_argument("--dataset_name", type=str, required=False, default="sol") |
|
parser.add_argument("--measure_name", type=str, required=False, default="measure") |
|
|
|
parser.add_argument("--checkpoints_folder", type=str, required=True) |
|
|
|
|
|
parser.add_argument("--model_path", type=str, default="./smi_ted/") |
|
parser.add_argument("--ckpt_filename", type=str, default="smi_ted_Light_40.pt") |
|
|
|
parser.add_argument("--save_every_epoch", type=int, default=0) |
|
parser.add_argument("--save_ckpt", type=int, default=1) |
|
parser.add_argument("--start_seed", type=int, default=0) |
|
parser.add_argument("--smi_ted_version", type=str, default="v1") |
|
parser.add_argument("--train_decoder", type=int, default=1) |
|
parser.add_argument("--target_metric", type=str, default="rmse") |
|
parser.add_argument("--loss_fn", type=str, default="mae") |
|
|
|
parser.add_argument( |
|
"--data_root", |
|
type=str, |
|
required=False, |
|
default="/dccstor/medscan7/smallmolecule/runs/ba-predictor/small-data/affinity", |
|
) |
|
|
|
parser.add_argument("--use_linear", type=int, default=0) |
|
|
|
parser.add_argument("--lr", type=float, default=0.001) |
|
|
|
|
|
parser.add_argument("--batch_size", type=int, default=64) |
|
|
|
return parser |
|
|
|
|
|
def parse_args(): |
|
parser = get_parser() |
|
args = parser.parse_args() |
|
return args |
|
|