materials.smi-ted / smi-ted /training /pubchem_canon_script.py
eduardosoares99's picture
Upload 159 files
02e480f verified
raw
history blame
2.64 kB
import logging
from dataclasses import dataclass
import pyarrow as pa
import datasets
logger = logging.getLogger(__name__)
FEATURES = datasets.Features(
{
"text": datasets.Value("string"),
}
)
@dataclass
class PubChemConfig(datasets.BuilderConfig):
"""BuilderConfig for text files."""
encoding: str = "utf-8"
chunksize: int = 10 << 20 # 10MB
class PubChem(datasets.ArrowBasedBuilder):
BUILDER_CONFIG_CLASS = PubChemConfig
def _info(self):
return datasets.DatasetInfo(features=FEATURES)
def _split_generators(self, dl_manager):
"""The `data_files` kwarg in load_dataset() can be a str, List[str], Dict[str,str], or Dict[str,List[str]].
If str or List[str], then the dataset returns only the 'train' split.
If dict, then keys should be from the `datasets.Split` enum.
"""
if not self.config.data_files:
raise ValueError(f"At least one data file must be specified, but got data_files={self.config.data_files}")
data_files = dl_manager.download_and_extract(self.config.data_files)
if isinstance(data_files, (str, list, tuple)):
files = data_files
if isinstance(files, str):
files = [files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"files": files})]
splits = []
for split_name, files in data_files.items():
if isinstance(files, str):
files = [files]
splits.append(datasets.SplitGenerator(name=split_name, gen_kwargs={"files": files}))
return splits
def _generate_tables(self, files):
for file_idx, file in enumerate(files):
batch_idx = 0
with open(file, "r", encoding=self.config.encoding) as f:
while True:
batch = f.read(self.config.chunksize)
if not batch:
break
batch += f.readline() # finish current line
batch = batch.splitlines()
#batch = [word.split()[-1] for word in batch]
pa_table = pa.Table.from_arrays([pa.array(batch)], schema=pa.schema({"text": pa.string()}))
# Uncomment for debugging (will print the Arrow table size and elements)
#logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
#logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield (file_idx, batch_idx), pa_table
batch_idx += 1