eduardosoares99's picture
Upload 159 files
02e480f verified
raw
history blame
22.7 kB
PATTERN = "(\[[^\]]+]|Br?|Cl?|N|O|S|P|F|I|b|c|n|o|s|p|\(|\)|\.|=|#|-|\+|\\\\|\/|:|~|@|\?|>|\*|\$|\%[0-9]{2}|[0-9])"
# Deep learning
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
# Transformers
from fast_transformers.attention import AttentionLayer
from fast_transformers.events import QKVEvent
from fast_transformers.transformers import TransformerEncoder, TransformerEncoderLayer
from fast_transformers.builders.transformer_builders import BaseTransformerEncoderBuilder
from fast_transformers.builders.attention_builders import AttentionBuilder
from fast_transformers.feature_maps import GeneralizedRandomFeatures
from fast_transformers.masking import LengthMask
from transformers import BertTokenizer
# Data
import numpy as np
import pandas as pd
# Standard library
from functools import partial
import regex as re
import random
import os
import gc
from tqdm import tqdm
tqdm.pandas()
class MolTranBertTokenizer(BertTokenizer):
def __init__(self, vocab_file: str = '',
do_lower_case=False,
unk_token='<pad>',
sep_token='<eos>',
pad_token='<pad>',
cls_token='<bos>',
mask_token='<mask>',
**kwargs):
super().__init__(vocab_file,
unk_token=unk_token,
sep_token=sep_token,
pad_token=pad_token,
cls_token=cls_token,
mask_token=mask_token,
**kwargs)
self.regex_tokenizer = re.compile(PATTERN)
self.wordpiece_tokenizer = None
self.basic_tokenizer = None
with open(vocab_file) as f:
self.padding_idx = f.readlines().index(pad_token+'\n')
def _tokenize(self, text):
split_tokens = self.regex_tokenizer.findall(text)
return split_tokens
def convert_idx_to_tokens(self, idx_tensor):
tokens = [self.convert_ids_to_tokens(idx) for idx in idx_tensor.tolist()]
return tokens
def convert_tokens_to_string(self, tokens):
stopwords = ['<bos>', '<eos>']
clean_tokens = [word for word in tokens if word not in stopwords]
out_string = ''.join(clean_tokens)
return out_string
def get_padding_idx(self):
return self.padding_idx
def idx_to_smiles(self, torch_model, idx):
'''Convert tokens idx back to SMILES text'''
rev_tokens = torch_model.tokenizer.convert_idx_to_tokens(idx)
flat_list_tokens = [item for sublist in rev_tokens for item in sublist]
decoded_smiles = torch_model.tokenizer.convert_tokens_to_string(flat_list_tokens)
return decoded_smiles
## Transformer layers
class RotaryEmbedding(torch.nn.Module):
def __init__(self, dim, base=10000):
super().__init__()
inv_freq = 1. / (base ** (torch.arange(0, dim, 2).float() / dim))
self.register_buffer('inv_freq', inv_freq)
self.seq_len_cached = 0
self.cos_cached = None
self.sin_cached = None
def forward(self, x, seq_dim=1):
seq_len = x.shape[seq_dim]
if seq_len != self.seq_len_cached:
self.seq_len_cached = seq_len
t = torch.arange(x.shape[seq_dim], device=x.device).type_as(self.inv_freq)
freqs = torch.einsum('i,j->ij', t, self.inv_freq)
emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
self.cos_cached = emb.cos()[None,:, None, :]
self.sin_cached = emb.sin()[None,:, None, :]
return self.cos_cached, self.sin_cached
def rotate_half(x):
x1, x2 = x[..., :x.shape[-1] // 2], x[..., x.shape[-1] // 2:]
return torch.cat((-x2, x1), dim=x1.ndim - 1) # dim=-1 triggers a bug in earlier torch versions
@torch.jit.script
def apply_rotary_pos_emb(q, k, cos, sin):
return (q * cos) + (rotate_half(q) * sin), (k * cos) + (rotate_half(k) * sin)
class RotateAttentionLayer(AttentionLayer):
"""Rotate attention layer inherits from fast_transformer attention layer.
The only thing added is an Embedding encoding, for more information
on the attention layer see the fast_transformers code
"""
def __init__(self, attention, d_model, n_heads, d_keys=None,
d_values=None, event_dispatcher=""):
super(RotateAttentionLayer, self).__init__(attention,d_model, n_heads, d_keys=d_keys,
d_values=d_values, event_dispatcher=event_dispatcher)
self.rotaryemb = RotaryEmbedding(d_keys)
print('Using Rotation Embedding')
def forward(self, queries, keys, values, attn_mask, query_lengths,
key_lengths):
"""
Using the same frame work as the fast_Transformers attention layer
but injecting rotary information to the queries and the keys
after the keys and queries are projected.
In the argument description we make use of the following sizes
- N: the batch size
- L: The maximum length of the queries
- S: The maximum length of the keys (the actual length per sequence
is given by the length mask)
- D: The input feature dimensionality passed in the constructor as
'd_model'
Arguments
---------
queries: (N, L, D) The tensor containing the queries
keys: (N, S, D) The tensor containing the keys
values: (N, S, D) The tensor containing the values
attn_mask: An implementation of BaseMask that encodes where each
query can attend to
query_lengths: An implementation of BaseMask that encodes how
many queries each sequence in the batch consists of
key_lengths: An implementation of BaseMask that encodes how
many queries each sequence in the batch consists of
Returns
-------
The new value for each query as a tensor of shape (N, L, D).
"""
# Extract the dimensions into local variables
N, L, _ = queries.shape
_, S, _ = keys.shape
H = self.n_heads
# Project the queries/keys/values
queries = self.query_projection(queries).view(N, L, H, -1)
keys = self.key_projection(keys).view(N, S, H, -1)
cos, sin = self.rotaryemb(queries)
queries, keys = apply_rotary_pos_emb(queries, keys, cos, sin)
values = self.value_projection(values).view(N, S, H, -1)
# Let the world know of the qkv
self.event_dispatcher.dispatch(QKVEvent(self, queries, keys, values))
# Compute the attention
new_values = self.inner_attention(
queries,
keys,
values,
attn_mask,
query_lengths,
key_lengths
).view(N, L, -1)
# Project the output and return
return self.out_projection(new_values)
class RotateEncoderBuilder(BaseTransformerEncoderBuilder):
"""Build a batch transformer encoder with Relative Rotary embeddings
for training or processing of sequences all elements at a time.
Example usage:
builder = RotateEncoderBuilder()
builder.n_layers = 12
builder.n_heads = 8
builder.feed_forward_dimensions = 1024
builder.query_dimensions = 64
builder.value_dimensions = 64
builder.dropout = 0.1
builder.attention_dropout = 0.1
builder.attention_type = "linear"
transformer = builder.get()
"""
def _get_attention_builder(self):
"""Return an instance of the appropriate attention builder."""
return AttentionBuilder()
def _get_attention_layer_class(self):
"""Return the class for the layer that projects queries keys and
values."""
return RotateAttentionLayer
def _get_encoder_class(self):
"""Return the class for the transformer encoder."""
return TransformerEncoder
def _get_encoder_layer_class(self):
"""Return the class for the transformer encoder layer."""
return TransformerEncoderLayer
class AutoEncoderLayer(nn.Module):
def __init__(self, feature_size, latent_size):
super().__init__()
self.encoder = self.Encoder(feature_size, latent_size)
self.decoder = self.Decoder(feature_size, latent_size)
class Encoder(nn.Module):
def __init__(self, feature_size, latent_size):
super().__init__()
self.is_cuda_available = torch.cuda.is_available()
self.fc1 = nn.Linear(feature_size, latent_size)
self.ln_f = nn.LayerNorm(latent_size)
self.lat = nn.Linear(latent_size, latent_size, bias=False)
def forward(self, x):
if self.is_cuda_available:
self.fc1.cuda()
self.ln_f.cuda()
self.lat.cuda()
x = x.cuda()
x = F.gelu(self.fc1(x))
x = self.ln_f(x)
x = self.lat(x)
return x # -> (N, D)
class Decoder(nn.Module):
def __init__(self, feature_size, latent_size):
super().__init__()
self.is_cuda_available = torch.cuda.is_available()
self.fc1 = nn.Linear(latent_size, latent_size)
self.ln_f = nn.LayerNorm(latent_size)
self.rec = nn.Linear(latent_size, feature_size, bias=False)
def forward(self, x):
if self.is_cuda_available:
self.fc1.cuda()
self.ln_f.cuda()
self.rec.cuda()
x = x.cuda()
x = F.gelu(self.fc1(x))
x = self.ln_f(x)
x = self.rec(x)
return x # -> (N, L*D)
class LangLayer(nn.Module):
def __init__(self, n_embd, n_vocab):
super().__init__()
self.is_cuda_available = torch.cuda.is_available()
self.embed = nn.Linear(n_embd, n_embd)
self.ln_f = nn.LayerNorm(n_embd)
self.head = nn.Linear(n_embd, n_vocab, bias=False)
def forward(self, tensor):
if self.is_cuda_available:
self.embed.cuda()
self.ln_f.cuda()
self.head.cuda()
tensor = tensor.cuda()
tensor = self.embed(tensor)
tensor = F.gelu(tensor)
tensor = self.ln_f(tensor)
tensor = self.head(tensor)
return tensor
class Net(nn.Module):
def __init__(self, smiles_embed_dim, n_output=1, dropout=0.2):
super().__init__()
self.desc_skip_connection = True
self.fc1 = nn.Linear(smiles_embed_dim, smiles_embed_dim)
self.dropout1 = nn.Dropout(dropout)
self.relu1 = nn.GELU()
self.fc2 = nn.Linear(smiles_embed_dim, smiles_embed_dim)
self.dropout2 = nn.Dropout(dropout)
self.relu2 = nn.GELU()
self.final = nn.Linear(smiles_embed_dim, n_output)
def forward(self, smiles_emb, multitask=False):
x_out = self.fc1(smiles_emb)
x_out = self.dropout1(x_out)
x_out = self.relu1(x_out)
if self.desc_skip_connection is True:
x_out = x_out + smiles_emb
z = self.fc2(x_out)
z = self.dropout2(z)
z = self.relu2(z)
if self.desc_skip_connection is True:
z = self.final(z + x_out)
else:
z = self.final(z)
if multitask:
return F.sigmoid(z)
return z
class MoLEncoder(nn.Module):
def __init__(self, config, n_vocab):
super(MoLEncoder, self).__init__()
# embeddings
self.config = config
self.tok_emb = nn.Embedding(n_vocab, config['n_embd'])
self.drop = nn.Dropout(config['d_dropout'])
# transformer
builder = RotateEncoderBuilder.from_kwargs(
n_layers=config['n_layer'],
n_heads=config['n_head'],
query_dimensions=config['n_embd']//config['n_head'],
value_dimensions=config['n_embd']//config['n_head'],
feed_forward_dimensions=None,
attention_type='linear',
# unless we do deterministic_eval here, we will have random outputs
feature_map=partial(GeneralizedRandomFeatures,
n_dims=config['num_feats'],
deterministic_eval=True),
activation='gelu'
)
self.blocks = builder.get()
# classification
self.lang_model = LangLayer(config['n_embd'], n_vocab)
def forward(self, idx, mask):
# transformer encoder
x = self.tok_emb(idx) # each index maps to a (learnable) vector
x = self.drop(x)
x = self.blocks(x, length_mask=LengthMask(mask.sum(-1), max_len=idx.shape[1]))
# add padding
token_embeddings = x
input_mask_expanded = mask.unsqueeze(-1).expand(token_embeddings.size()).float()
mask_embeddings = (token_embeddings * input_mask_expanded)
token_embeddings = F.pad(mask_embeddings, pad=(0, 0, 0, self.config['max_len'] - mask_embeddings.shape[1]), value=0)
return token_embeddings
class MoLDecoder(nn.Module):
def __init__(self, n_vocab, max_len, n_embd, n_gpu=None):
super(MoLDecoder, self).__init__()
self.max_len = max_len
self.n_embd = n_embd
self.n_gpu = n_gpu
self.autoencoder = AutoEncoderLayer(n_embd*max_len, n_embd)
self.lang_model = LangLayer(n_embd, n_vocab)
class Smi_ted(nn.Module):
"""materials.smi-ted-Large 738M Parameters"""
def __init__(self, tokenizer, config=None):
super(Smi_ted, self).__init__()
# configuration
self.config = config
self.tokenizer = tokenizer
self.padding_idx = tokenizer.get_padding_idx()
self.n_vocab = len(self.tokenizer.vocab)
self.is_cuda_available = torch.cuda.is_available()
# instantiate modules
if self.config:
self.encoder = MoLEncoder(self.config, self.n_vocab)
self.decoder = MoLDecoder(self.n_vocab, self.config['max_len'], self.config['n_embd'])
self.net = Net(self.config['n_embd'], n_output=self.config['n_output'], dropout=self.config['d_dropout'])
def load_checkpoint(self, ckpt_path):
# load checkpoint file
checkpoint = torch.load(ckpt_path, map_location=torch.device('cpu'))
# load hyparameters
self.config = checkpoint['hparams']
self.max_len = self.config['max_len']
self.n_embd = self.config['n_embd']
self._set_seed(self.config['seed'])
# instantiate modules
self.encoder = MoLEncoder(self.config, self.n_vocab)
self.decoder = MoLDecoder(self.n_vocab, self.max_len, self.n_embd)
self.net = Net(self.n_embd, n_output=self.config['n_output'] if 'n_output' in self.config else 1, dropout=self.config['d_dropout'])
# load weights
if 'state_dict' in checkpoint:
if isinstance(checkpoint['state_dict'], list):
self.encoder.load_state_dict(checkpoint['state_dict'][0], strict=False)
self.decoder.load_state_dict(checkpoint['state_dict'][1], strict=False)
else:
self.load_state_dict(checkpoint['state_dict'], strict=False)
elif 'MODEL_STATE' in checkpoint:
self.load_state_dict(checkpoint['MODEL_STATE'], strict=False)
# load RNG states each time the model and states are loaded from checkpoint
if 'rng' in self.config:
rng = self.config['rng']
for key, value in rng.items():
if key =='torch_state':
torch.set_rng_state(value.cpu())
elif key =='cuda_state':
torch.cuda.set_rng_state(value.cpu())
elif key =='numpy_state':
np.random.set_state(value)
elif key =='python_state':
random.setstate(value)
else:
print('unrecognized state')
def _set_seed(self, value):
print('Random Seed:', value)
random.seed(value)
torch.manual_seed(value)
torch.cuda.manual_seed(value)
torch.cuda.manual_seed_all(value)
np.random.seed(value)
cudnn.deterministic = True
cudnn.benchmark = False
def forward(self, smiles, batch_size=100):
return self.decode(self.encode(smiles, batch_size=batch_size, return_torch=True))
def tokenize(self, smiles):
"""Tokenize a string into tokens."""
if isinstance(smiles, str):
batch = [smiles]
else:
batch = smiles
tokens = self.tokenizer(
batch,
padding=True,
truncation=True,
add_special_tokens=True,
return_tensors="pt",
max_length=self.max_len,
)
idx = tokens['input_ids'].clone().detach()
mask = tokens['attention_mask'].clone().detach()
if self.is_cuda_available:
return idx.cuda(), mask.cuda()
return idx, mask
def extract_all(self, smiles):
"""Extract all elements from each part of smi-ted. Be careful."""
# evaluation mode
self.encoder.eval()
self.decoder.eval()
if self.is_cuda_available:
self.encoder.cuda()
self.decoder.cuda()
# tokenizer
idx, mask = self.tokenize(smiles)
###########
# Encoder #
###########
# encoder forward
x = self.encoder.tok_emb(idx) # each index maps to a (learnable) vector
x = self.encoder.drop(x)
x = self.encoder.blocks(x, length_mask=LengthMask(mask.sum(-1)))
# mean pooling
token_embeddings = x
input_mask_expanded = mask.unsqueeze(-1).expand(token_embeddings.size()).float()
sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1)
sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9)
true_set = sum_embeddings / sum_mask # DO NOT USE THIS FOR DOWNSTREAM TASKS, USE `pred_set` INSTEAD
# add padding
mask_embeddings = (token_embeddings * input_mask_expanded)
token_embeddings = F.pad(mask_embeddings, pad=(0, 0, 0, self.max_len - mask_embeddings.shape[1]), value=0)
idx = F.pad(idx, pad=(0, self.max_len - idx.shape[1], 0, 0), value=2)
true_ids = idx
true_cte = token_embeddings
true_cte = true_cte.view(-1, self.max_len*self.n_embd)
###########
# Decoder #
###########
# CTE autoencoder
pred_set = self.decoder.autoencoder.encoder(true_cte)
pred_cte = self.decoder.autoencoder.decoder(pred_set)
# reconstruct tokens
pred_ids = self.decoder.lang_model(pred_cte.view(-1, self.max_len, self.n_embd))
pred_ids = torch.argmax(pred_ids, axis=-1)
return ((true_ids, pred_ids), # tokens
(true_cte, pred_cte), # token embeddings
(true_set, pred_set)) # smiles embeddings
def extract_embeddings(self, smiles):
"""Extract token and SMILES embeddings."""
# evaluation mode
self.encoder.eval()
if self.is_cuda_available:
self.encoder.cuda()
# tokenizer
idx, mask = self.tokenize(smiles)
# encoder forward
token_embeddings = self.encoder(idx, mask)
# aggregate token embeddings (similar to mean pooling)
# CAUTION: use the embeddings from the autoencoder.
smiles_embeddings = self.decoder.autoencoder.encoder(token_embeddings.view(-1, self.max_len*self.n_embd))
# add padding
idx = F.pad(idx, pad=(0, self.max_len - idx.shape[1], 0, 0), value=self.padding_idx)
return idx, token_embeddings, smiles_embeddings
def encode(self, smiles, useCuda=False, batch_size=100, return_torch=False):
"""Extract efficiently SMILES embeddings per batches."""
# TODO: remove useCuda argument
# handle single str or a list of str
smiles = pd.Series(smiles) if isinstance(smiles, str) else pd.Series(list(smiles))
n_split = smiles.shape[0] // batch_size if smiles.shape[0] >= batch_size else smiles.shape[0]
# process in batches
embeddings = [
self.extract_embeddings(list(batch))[2].cpu().detach().numpy()
for batch in tqdm(np.array_split(smiles, n_split))
]
flat_list = [item for sublist in embeddings for item in sublist]
# clear GPU memory
if self.is_cuda_available:
torch.cuda.empty_cache()
gc.collect()
if return_torch:
return torch.tensor(np.array(flat_list))
return pd.DataFrame(flat_list)
def decode(self, smiles_embeddings):
"""Decode SMILES embeddings back to SMILES."""
# evaluation mode
self.decoder.eval()
if self.is_cuda_available:
self.decoder.cuda()
# reconstruct token embeddings
pred_token_embds = self.decoder.autoencoder.decoder(smiles_embeddings)
# reconstruct tokens
pred_idx = self.decoder.lang_model(pred_token_embds.view(-1, self.max_len, self.n_embd))
pred_idx = torch.argmax(pred_idx, axis=-1).cpu().detach().numpy()
# convert idx to tokens
pred_smiles = []
for i in range(pred_idx.shape[0]):
idx = pred_idx[i]
smiles = self.tokenizer.idx_to_smiles(self, idx)
smiles = smiles.replace('<bos>', '') # begin token
smiles = smiles.replace('<eos>', '') # end token
smiles = smiles.replace('<pad>', '') # pad token
pred_smiles.append(smiles)
# clear GPU memory
if self.is_cuda_available:
torch.cuda.empty_cache()
gc.collect()
return pred_smiles
def __str__(self):
return 'smi-ted-Large'
def load_smi_ted(folder="./smi_ted_large",
ckpt_filename="smi-ted-Large_30.pt",
vocab_filename="bert_vocab_curated.txt"
):
tokenizer = MolTranBertTokenizer(os.path.join(folder, vocab_filename))
model = Smi_ted(tokenizer)
model.load_checkpoint(os.path.join(folder, ckpt_filename))
model.eval()
print('Vocab size:', len(tokenizer.vocab))
print(f'[INFERENCE MODE - {str(model)}]')
return model