# Deep learning import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.checkpoint as checkpoint from torch.utils.data import DataLoader from torch.nn.parallel import DistributedDataParallel as DDP from fast_transformers.masking import LengthMask # Standard library from tqdm import tqdm import pandas as pd import numpy as np import random import os class Trainer: def __init__( self, model: torch.nn.Module, train_data: DataLoader, optimizer: torch.optim.Optimizer, save_every: int, save_checkpoint_path: str, load_checkpoint_path: str, config, ) -> None: self.local_rank = int(os.environ["LOCAL_RANK"]) self.global_rank = int(os.environ["RANK"]) self.model = model.to(self.local_rank) self.train_data = train_data self.optimizer = optimizer self.save_every = save_every self.epochs_run = 0 self.last_batch_idx = -1 self.save_checkpoint_path = save_checkpoint_path self.config = config if os.path.exists(load_checkpoint_path): print(f"Loading checkpoint at {load_checkpoint_path}...") self._load_checkpoint(load_checkpoint_path) self.model = DDP(self.model, device_ids=[self.local_rank]) def _load_checkpoint(self, checkpoint_path): opt_dict = None loc = f"cuda:{self.local_rank}" ckpt_dict = torch.load(checkpoint_path, map_location=loc) if os.path.exists(os.path.join(self.save_checkpoint_path, 'OPTIMIZER_STATES.pt')): opt_dict = torch.load(os.path.join(self.save_checkpoint_path, 'OPTIMIZER_STATES.pt'), map_location=loc) self.model.load_state_dict(ckpt_dict["MODEL_STATE"]) if opt_dict is not None: self.optimizer.load_state_dict(opt_dict["OPTIMIZER_STATE"]) print('Optimizer states restored!') self.last_batch_idx = ckpt_dict["last_batch_idx"] if 'last_batch_idx' in ckpt_dict else -1 self.epochs_run = ckpt_dict["EPOCHS_RUN"] + 1 if self.last_batch_idx == -1 else ckpt_dict["EPOCHS_RUN"] # load RNG states each time the model and states are loaded from checkpoint if 'rng' in ckpt_dict: rng = ckpt_dict['rng'] for key, value in rng.items(): if key =='torch_state': torch.set_rng_state(value.cpu()) elif key =='cuda_state': torch.cuda.set_rng_state(value.cpu()) elif key =='numpy_state': np.random.set_state(value) elif key =='python_state': random.setstate(value) else: print('unrecognized state') print(f"Resuming training from checkpoint at Epoch {self.epochs_run}.") def _save_checkpoint(self, epoch, config, last_idx): # save RNG states each time the model and states are saved out_dict = dict() out_dict['torch_state'] = torch.get_rng_state() out_dict['cuda_state'] = torch.cuda.get_rng_state() if np: out_dict['numpy_state'] = np.random.get_state() if random: out_dict['python_state'] = random.getstate() # model states ckpt_dict = { "MODEL_STATE": self.model.module.state_dict(), "EPOCHS_RUN": epoch, "hparams": vars(config), "last_batch_idx": last_idx, "rng": out_dict } # optimizer states opt_dict = { "OPTIMIZER_STATE": self.optimizer.state_dict(), } if last_idx == -1: filename = f'{str(self.model.module)}_{epoch}.pt' else: filename = f'{str(self.model.module)}_{last_idx}_{epoch}.pt' torch.save(ckpt_dict, os.path.join(self.save_checkpoint_path, filename)) torch.save(opt_dict, os.path.join(self.save_checkpoint_path, 'OPTIMIZER_STATES.pt')) print(f"Epoch {epoch} | Training checkpoint saved at {os.path.join(self.save_checkpoint_path, filename)}.") def train(self, max_epochs: int): for epoch in range(self.epochs_run, max_epochs): self._run_epoch(epoch) if self.local_rank == 0: self._save_checkpoint(epoch, self.config, last_idx=-1) def _run_epoch(self, epoch): print(f"[GPU{self.global_rank}] Epoch {epoch} | Batchsize: {self.config.n_batch} | Steps: {len(self.train_data)} | Last batch: {self.last_batch_idx}") self.train_data.sampler.set_epoch(epoch) loss_list = pd.Series() for idx, data in enumerate(tqdm(self.train_data)): # skip batches if idx <= self.last_batch_idx: continue # run batch bucket_idx_masked = data[0] bucket_targets = data[1] bucket_idx_not_masked = data[2] loss = self._run_batch(bucket_idx_masked, bucket_targets, bucket_idx_not_masked) torch.cuda.empty_cache() # track loss if self.local_rank == 0: loss_list = pd.concat([loss_list, pd.Series([loss])], axis=0) # checkpoint if self.local_rank == 0 and idx % self.save_every == 0 and idx != 0: self._save_checkpoint(epoch, self.config, idx) # WARN: due to job limit time - save loss for each iter loss_list.to_csv(os.path.join(self.config.save_checkpoint_path, f'training_loss_{idx}_epoch{epoch}.csv'), index=False) loss_list = pd.Series() self.last_batch_idx = -1 if self.local_rank == 0: loss_list.to_csv(os.path.join(self.config.save_checkpoint_path, f'training_loss_epoch{epoch}.csv'), index=False) def _run_batch(self, bucket_idx_masked, bucket_targets, bucket_idx_not_masked): raise NotImplementedError class TrainerEncoderDecoder(Trainer): def __init__( self, model: torch.nn.Module, train_data: DataLoader, optimizer: torch.optim.Optimizer, save_every: int, save_checkpoint_path: str, load_checkpoint_path: str, config, ) -> None: super().__init__(model, train_data, optimizer, save_every, save_checkpoint_path, load_checkpoint_path, config) self.criterionC = nn.CrossEntropyLoss(ignore_index=-100) self.criterionR = nn.MSELoss() self.optimE = self.optimizer[0] self.optimD = self.optimizer[1] self.ngpus_per_node = torch.cuda.device_count() self.total_batches = len(self.train_data) self.batch_thresh = int(self.total_batches - (self.total_batches * 0.05 * self.ngpus_per_node)) print('batch_thresh:', self.batch_thresh) def _load_checkpoint(self, checkpoint_path): opt_dict = None loc = f"cuda:{self.local_rank}" ckpt_dict = torch.load(checkpoint_path, map_location=loc) if os.path.exists(os.path.join(self.save_checkpoint_path, 'OPTIMIZER_STATES.pt')): opt_dict = torch.load(os.path.join(self.save_checkpoint_path, 'OPTIMIZER_STATES.pt'), map_location=loc) self.model.load_state_dict(ckpt_dict["MODEL_STATE"]) if opt_dict is not None: self.optimizer[0].load_state_dict(opt_dict["OPTIMIZER_STATE_ENCODER"]) self.optimizer[1].load_state_dict(opt_dict["OPTIMIZER_STATE_DECODER"]) print('Optimizer states restored!') self.last_batch_idx = ckpt_dict["last_batch_idx"] if 'last_batch_idx' in ckpt_dict else -1 self.epochs_run = ckpt_dict["EPOCHS_RUN"] + 1 if self.last_batch_idx == -1 else ckpt_dict["EPOCHS_RUN"] # load RNG states each time the model and states are loaded from checkpoint if 'rng' in ckpt_dict: rng = ckpt_dict['rng'] for key, value in rng.items(): if key =='torch_state': torch.set_rng_state(value.cpu()) elif key =='cuda_state': torch.cuda.set_rng_state(value.cpu()) elif key =='numpy_state': np.random.set_state(value) elif key =='python_state': random.setstate(value) else: print('unrecognized state') print(f"Resuming training from checkpoint at Epoch {self.epochs_run}.") def _save_checkpoint(self, epoch, config, last_idx): # save RNG states each time the model and states are saved out_dict = dict() out_dict['torch_state'] = torch.get_rng_state() out_dict['cuda_state'] = torch.cuda.get_rng_state() if np: out_dict['numpy_state'] = np.random.get_state() if random: out_dict['python_state'] = random.getstate() # model states ckpt_dict = { "MODEL_STATE": self.model.module.state_dict(), "EPOCHS_RUN": epoch, "hparams": vars(config), "last_batch_idx": last_idx, "rng": out_dict } # optimizer states opt_dict = { "OPTIMIZER_STATE_ENCODER": self.optimizer[0].state_dict(), "OPTIMIZER_STATE_DECODER": self.optimizer[1].state_dict(), } if last_idx == -1: filename = f'{str(self.model.module)}_{epoch}.pt' else: filename = f'{str(self.model.module)}_{last_idx}_{epoch}.pt' torch.save(ckpt_dict, os.path.join(self.save_checkpoint_path, filename)) torch.save(opt_dict, os.path.join(self.save_checkpoint_path, 'OPTIMIZER_STATES.pt')) print(f"Epoch {epoch} | Training checkpoint saved at {os.path.join(self.save_checkpoint_path, filename)}.") def _run_epoch(self, epoch): print(f"[GPU{self.global_rank}] Epoch {epoch} | Batchsize: {self.config.n_batch} | Steps: {len(self.train_data)}") self.train_data.sampler.set_epoch(epoch) loss_list = pd.DataFrame() for idx, data in enumerate(tqdm(self.train_data)): bucket_idx_masked = data[0] bucket_targets = data[1] bucket_idx_not_masked = data[2] lossE, lossD = self._run_batch(idx, bucket_idx_masked, bucket_targets, bucket_idx_not_masked) torch.cuda.empty_cache() if self.local_rank == 0: df = pd.DataFrame({ 'lossE': [lossE.cpu().item()], 'lossD': [lossD.cpu().item()], }) loss_list = pd.concat([loss_list, df], axis=0) if self.local_rank == 0: loss_list.to_csv(os.path.join(self.config.save_checkpoint_path, f'training_loss_epoch{epoch}.csv'), index=False) def custom(self, module): def custom_forward(*inputs): inputs = module(inputs[0]) return inputs return custom_forward def _run_batch(self, batch_idx, bucket_idx_masked, bucket_targets, bucket_idx_not_masked): self.optimE.zero_grad(set_to_none=True) self.optimD.zero_grad(set_to_none=True) can_train_encoder = (batch_idx + 1) <= self.batch_thresh can_train_decoder = (batch_idx + 1) > self.batch_thresh padding_idx = 2 errorE = torch.zeros(1).to(self.local_rank) errorD = torch.zeros(1).to(self.local_rank) errorE_tmp = .0 errorD_tmp = .0 for chunk in range(len(bucket_idx_masked)): idx_masked = bucket_idx_masked[chunk].to(self.local_rank) targets = bucket_targets[chunk].to(self.local_rank) idx_not_masked = bucket_idx_not_masked[chunk] idx_not_masked = list(map(lambda x: F.pad(x, pad=(0, self.config.max_len - x.shape[0]), value=2).unsqueeze(0), idx_not_masked)) idx_not_masked = torch.cat(idx_not_masked, dim=0).to(self.local_rank) mask = (idx_masked != padding_idx) ########### # Encoder # ########### if can_train_encoder: for param in self.model.module.encoder.parameters(): param.requires_grad = True for param in self.model.module.decoder.parameters(): param.requires_grad = False # encoder forward x = self.model.module.encoder.tok_emb(idx_masked) x = self.model.module.encoder.drop(x) x = checkpoint.checkpoint(self.custom(self.model.module.encoder.blocks), x) logits = self.model.module.encoder.lang_model(x) # loss function logits = logits.view(-1, logits.size(-1)) targets = targets.view(-1) errorE_tmp = self.criterionC(logits, targets) / len(bucket_idx_masked) if chunk < len(bucket_idx_masked)-1: errorE_tmp.backward() errorE += errorE_tmp.detach() else: errorE += errorE_tmp ########### # Decoder # ########### if can_train_decoder: for param in self.model.module.encoder.parameters(): param.requires_grad = False for param in self.model.module.decoder.parameters(): param.requires_grad = True self.model.module.encoder.eval() # encoder forward with torch.no_grad(): true_set, true_cte = self.model.module.encoder(idx_masked, mask=mask, inference=True) # add padding input_mask_expanded = mask.unsqueeze(-1).expand(true_cte.size()).float() mask_embeddings = (true_cte * input_mask_expanded) true_cte = F.pad(mask_embeddings, pad=(0, 0, 0, self.config.max_len - mask_embeddings.shape[1]), value=0) true_cte = true_cte.view(-1, self.config.max_len*self.config.n_embd) # decoder forward pred_set, pred_ids = self.model.module.decoder(true_cte) # losses pred_ids = pred_ids.view(-1, pred_ids.size(-1)) true_ids = idx_not_masked.view(-1) error_ids = self.criterionC(pred_ids, true_ids) / len(bucket_idx_masked) error_set = self.criterionR(pred_set, true_set) / len(bucket_idx_masked) errorD_tmp = error_ids + error_set if chunk < len(bucket_idx_masked)-1: errorD_tmp.backward() errorD += errorD_tmp.detach() else: errorD += errorD_tmp if can_train_decoder: errorD.backward() self.optimD.step() elif can_train_encoder: errorE.backward() self.optimE.step() if self.local_rank == 0: print(f'LossE: {errorE.item()} | LossD: {errorD.item()}') return errorE, errorD class TrainerDirectDecoder(Trainer): def __init__( self, model: torch.nn.Module, train_data: DataLoader, optimizer: torch.optim.Optimizer, save_every: int, save_checkpoint_path: str, load_checkpoint_path: str, config, ) -> None: super().__init__(model, train_data, optimizer, save_every, save_checkpoint_path, load_checkpoint_path, config) self.criterionC = nn.CrossEntropyLoss(ignore_index=-100) self.criterionR = nn.MSELoss() def custom(self, module): def custom_forward(*inputs): inputs = module(inputs[0], length_mask=inputs[1]) return inputs return custom_forward def _run_batch(self, bucket_idx_masked, bucket_targets, bucket_idx_not_masked): padding_idx = 2 error = torch.zeros(1).to(self.local_rank) error_tmp = .0 self.optimizer.zero_grad(set_to_none=True) for chunk in range(len(bucket_idx_masked)): idx_masked = bucket_idx_masked[chunk].to(self.local_rank) targets = bucket_targets[chunk].to(self.local_rank) idx_not_masked = bucket_idx_not_masked[chunk] idx_not_masked = list(map(lambda x: F.pad(x, pad=(0, self.config.max_len - x.shape[0]), value=2).unsqueeze(0), idx_not_masked)) idx_not_masked = torch.cat(idx_not_masked, dim=0).to(self.local_rank) mask = (idx_masked != padding_idx) # encoder forward x = self.model.module.encoder.tok_emb(idx_masked) x = self.model.module.encoder.drop(x) x = checkpoint.checkpoint(self.custom(self.model.module.encoder.blocks), x, LengthMask(mask.sum(-1), max_len=idx_masked.shape[1])) # mean pooling input_masked_expanded = mask.unsqueeze(-1).expand(x.size()).float() sum_embeddings = torch.sum(x*input_masked_expanded, 1) sum_mask = torch.clamp(input_masked_expanded.sum(1), min=1e-9) true_set = sum_embeddings/sum_mask true_cte = x del x torch.cuda.empty_cache() # add padding input_mask_expanded = mask.unsqueeze(-1).expand(true_cte.size()).float() mask_embeddings = (true_cte * input_mask_expanded) true_cte = F.pad(mask_embeddings, pad=(0, 0, 0, self.config.max_len - mask_embeddings.shape[1]), value=0) true_cte = true_cte.view(-1, self.config.max_len*self.config.n_embd) # decoder forward pred_set, pred_ids = self.model.module.decoder(true_cte) # losses pred_ids = pred_ids.view(-1, pred_ids.size(-1)) true_ids = idx_not_masked.view(-1) error_ids = self.criterionC(pred_ids, true_ids) / len(bucket_idx_masked) error_set = self.criterionR(pred_set, true_set) / len(bucket_idx_masked) error_tmp = error_ids + error_set if chunk < len(bucket_idx_masked)-1: error_tmp.backward() error += error_tmp.detach() else: error += error_tmp torch.cuda.empty_cache() error.backward() self.optimizer.step() if self.local_rank == 0: print(f'Loss: {error.item()}') return error.item()