# Deep learning import torch import torch.nn as nn from torch import optim from trainers import TrainerClassifier from utils import get_optim_groups # Data import pandas as pd import numpy as np # Standard library import args import os def main(config): device = 'cuda' if torch.cuda.is_available() else 'cpu' # load dataset df_train = pd.read_csv(f"{config.data_root}/train.csv") df_valid = pd.read_csv(f"{config.data_root}/valid.csv") df_test = pd.read_csv(f"{config.data_root}/test.csv") # load model if config.smi_ted_version == 'v1': from smi_ted_light.load import load_smi_ted elif config.smi_ted_version == 'v2': from smi_ted_large.load import load_smi_ted model = load_smi_ted(folder=config.model_path, ckpt_filename=config.ckpt_filename, n_output=config.n_output) model.net.apply(model._init_weights) print(model.net) lr = config.lr_start*config.lr_multiplier optim_groups = get_optim_groups(model, keep_decoder=bool(config.train_decoder)) if config.loss_fn == 'crossentropy': loss_function = nn.CrossEntropyLoss() # init trainer trainer = TrainerClassifier( raw_data=(df_train, df_valid, df_test), dataset_name=config.dataset_name, target=config.measure_name, batch_size=config.n_batch, hparams=config, target_metric=config.target_metric, seed=config.start_seed, checkpoints_folder=config.checkpoints_folder, device=device, save_ckpt=bool(config.save_ckpt) ) trainer.compile( model=model, optimizer=optim.AdamW(optim_groups, lr=lr, betas=(0.9, 0.99)), loss_fn=loss_function ) trainer.fit(max_epochs=config.max_epochs) if __name__ == '__main__': parser = args.get_parser() config = parser.parse_args() main(config)